sermorelin has been researched along with Neoplasms* in 4 studies
4 other study(ies) available for sermorelin and Neoplasms
Article | Year |
---|---|
GHRH antagonists reduce the invasive and metastatic potential of human cancer cell lines in vitro.
We investigated the effect of a GHRH antagonist, MIA-602on the metastatic cascade in vitro of three human cancers, DBTRG-05 glioblastoma, MDA-MB-468 estrogen-independent breast, and ES-2 clear cell ovarian cancer. GHRH receptors and their main splice variant, SV1 were detected on all three cell lines. After treatment with MIA-602, the cell viability decreased significantly, significant inhibition of cell invasion was observed and the release of MMPs was significantly decreased. The attachment of cancer cells to fibronectin and matrigel was severely hindered. Wound-healing experiments demonstrated a reduced cellular motility in all three cell lines. The upregulation of caveolin-1 and E-cadherin,and thepowerful downregulation of NF-kappaB and beta-catenin was detected. Our study suggests that the clinical application of highly potent GHRH antagonists in cancer therapy would be desirable since they inhibit proliferation and metastasis development as well. Topics: Blotting, Western; Cell Adhesion; Cell Growth Processes; Cell Line, Tumor; Cell Movement; Female; Growth Hormone-Releasing Hormone; Humans; Immunoblotting; Male; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasms; Protein Isoforms; Sermorelin | 2010 |
Knocking down gene expression for growth hormone-releasing hormone inhibits proliferation of human cancer cell lines.
Splice Variant 1 (SV-1) of growth hormone-releasing hormone (GHRH) receptor, found in a wide range of human cancers and established human cancer cell lines, is a functional receptor with ligand-dependent and independent activity. In the present study, we demonstrated by western blots the presence of the SV1 of GHRH receptor and the production of GHRH in MDA-MB-468, MDA-MB-435S and T47D human breast cancer cell lines, LNCaP prostate cancer cell line as well as in NCI H838 non-small cell lung carcinoma. We have also shown that GHRH produced in the conditioned media of these cell lines is biologically active. We then inhibited the intrinsic production of GHRH in these cancer cell lines using si-RNA, specially designed for human GHRH. The knocking down of the GHRH gene expression suppressed the proliferation of T47D, MDA-MB-435S, MDA-MB-468 breast cancer, LNCaP prostate cancer and NCI H838 non-SCLC cell lines in vitro. However, the replacement of the knocked down GHRH expression by exogenous GHRH (1-29)NH(2) re-established the proliferation of the silenced cancer cell lines. Furthermore, the proliferation rate of untransfected cancer cell lines could be stimulated by GHRH (1-29)NH(2) and inhibited by GHRH antagonists MZ-5-156, MZ-4-71 and JMR-132. These results extend previous findings on the critical function of GHRH in tumorigenesis and support the role of GHRH as a tumour growth factor. Topics: Cell Line, Tumor; Cell Proliferation; Female; Growth Hormone-Releasing Hormone; Humans; Male; Neoplasms; Radioimmunoassay; RNA, Small Interfering; Sermorelin | 2008 |
Inhibition of growth, production of insulin-like growth factor-II (IGF-II), and expression of IGF-II mRNA of human cancer cell lines by antagonistic analogs of growth hormone-releasing hormone in vitro.
Antagonistic analogs of growth hormone-releasing hormone (GHRH) suppress growth of various tumors in vivo. This effect is exerted in part through inhibition of the GHRH-GH-insulin-like growth factor (IGF)-I axis. Nevertheless, because autocrine/paracrine control of proliferation by IGF-II also is a major factor in many tumors, the interference with this growth-stimulating pathway would offer another approach to tumor control. We thus investigated whether GHRH antagonists MZ-4-71 and MZ-5-156 also act on the tumor cells directly by blocking the production of IGF-II. An increase in the IGF-II concentration in the media during culture was found in 13 of 26 human cancer cell lines tested. Reverse transcription-PCR studies on 8 of these cell lines showed that they also expressed IGF-II mRNA. Antagonists of GHRH significantly inhibited the rate of proliferation of mammary (MDA-MB-468 and ZR-75-1), prostatic (PC-3 and DU-145), and pancreatic (MiaPaCa-2, SW-1990, and Capan-2) cancer cell lines as shown by colorimetric and [3H]thymidine incorporation tests and reduced the expression of IGF-II mRNA in the cells and the concentration of IGF-II secreted into the culture medium. Growth and IGF-II production of lung (H-23 and H-69) and ovarian (OV-1063) cancer cells that express mRNA for IGF-II and excrete large quantities of IGF-II also was marginally suppressed by the antagonists. These findings suggest that antagonistic analogs of GHRH can inhibit growth of certain tumors not only by inhibiting the GHRH-GH-IGF-I axis, but also by reducing the IGF-II production and by interfering with the autocrine regulatory pathway. Topics: Cell Division; Gene Expression Regulation, Neoplastic; Growth Hormone-Releasing Hormone; Hormone Antagonists; Humans; Insulin-Like Growth Factor II; Neoplasms; RNA, Messenger; Sermorelin; Tumor Cells, Cultured | 1999 |
Antagonistic analogs of growth hormone releasing hormone (GHRH) inhibit cyclic AMP production of human cancer cell lines in vitro.
Antagonistic analogs of growth hormone-releasing hormone (GHRH) inhibit growth of various human cancers both in vivo and in vitro. GHRH, vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide stimulate cyclic AMP (cAMP) release from various human cancer cell lines in vitro. Thus, in the present study, we investigated the effects of antagonistic analogs of GHRH on the GHRH- and VIP-induced cAMP release from cultured human cancer cells in a superfusion system. Various human cancer cell lines were exposed to human GHRH(1-29)NH2 (2-20 nM) or VIP (0.1-5 nM) repeatedly for 12 min or continuously for 96 min. GHRH antagonist MZ-5-156 at 100 to 200 nM concentration inhibited the GHRH- or VIP-induced cAMP release from mammary (MDA-MB-468), prostatic (PC-3), and pancreatic (SW-1990 and CAPAN-2) cancer cells. These results show that antagonistic analogs of GHRH suppress the stimulatory effects of GHRH and VIP on the cAMP production of various cancer cells. Because cAMP is a potent second messenger controlling many intracellular functions, including the stimulation of cell growth, an inhibition of autocrine/paracrine action of GHRH by the GHRH antagonists may provide the basis for the development of new methods for cancer treatment. Topics: Animals; Breast Neoplasms; Cell Division; Cyclic AMP; Female; Growth Hormone-Releasing Hormone; Human Growth Hormone; Humans; In Vitro Techniques; Male; Neoplasms; Pancreatic Neoplasms; Pituitary Gland, Anterior; Prostatic Neoplasms; Rats; Second Messenger Systems; Sermorelin; Tumor Cells, Cultured; Vasoactive Intestinal Peptide | 1999 |