sepiapterin has been researched along with Parkinson-Disease* in 3 studies
3 other study(ies) available for sepiapterin and Parkinson-Disease
Article | Year |
---|---|
Nitration of soluble proteins in organotypic culture models of Parkinson's disease.
Protein nitration due to oxidative and nitrative stress has been linked to the pathogenesis of Parkinson's disease (PD), but its relationship to the loss of dopamine (DA) or tyrosine hydroxylase (TH) activity is not clear. Here we quantified protein-bound 3-nitrotyrosine (3-NT) by a novel gas chromatography/negative chemical ionization tandem mass spectrometry technique and DA and 3,4-dihydroxyphenylalanine (DOPA) by HPLC in tissues or medium of organotypic, mouse mesencephalon cultures after acute or chronic treatments with the peroxynitrite donor 3-morpholino-sydnonimine (SIN-1), the dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP(+)) or the lipophilic complex I inhibitor rotenone. Incubation with SIN-1 (24 h) or MPP(+) treatments (48 h) caused dose-dependent protein nitration reaching a maximum of eightfold increase by 10 mM SIN-1 or twofold by 10 microM MPP(+), but significant DA depletions occurred at much lower concentrations of MPP(+) (1 microM). Chronic MPP(+) or rotenone treatments (3 weeks) caused maximum protein nitration by 1 microM (twofold) or 10nM (fourfold), respectively. Co-treatment with the nitric oxide synthase inhibitor l-NAME (300 microM) prevented protein nitration by MPP(+), but did not protect against MPP(+)-induced DA depletion or inhibition of TH activity. Acute incubation with 100 microM SIN-1 inhibited TH activity, which could be blocked by co-treatment with the tetrahydrobiopterin precursor l-sepiapterin, but tissue DA depletions required higher doses of SIN-1 (>1 mM, 24 h) and longer survival. In conclusion, protein nitration and TH activity or DA depletion are not directly related in these models. Topics: 1-Methyl-4-phenylpyridinium; Animals; Cell Survival; Dopamine; Dose-Response Relationship, Drug; Enzyme Inhibitors; Mice; Mice, Inbred C57BL; Neurochemistry; Neurotoxins; Nitric Oxide Donors; Nitric Oxide Synthase; Nitro Compounds; Organ Culture Techniques; Oxidative Stress; Parkinson Disease; Proteins; Pterins; Reactive Nitrogen Species; Substantia Nigra; Tyrosine; Tyrosine 3-Monooxygenase; Uncoupling Agents | 2008 |
Glutathione depletion in nigrostriatal slice cultures: GABA loss, dopamine resistance and protection by the tetrahydrobiopterin precursor sepiapterin.
Dopaminergic neurons in culture are preferentially resistant to the toxicity of glutathione (GSH) depletion. This effect may be due to high intrinsic levels of tetrahydrobiopterin (BH(4)). Here we studied the effects of manipulating GSH and/or BH(4) levels on selective neurotoxicity in organotypic nigrostriatal slice cultures. Following treatments with L-buthionine sulfoximine (BSO, 10-100 microM, 2 days exposure, 2 days recovery), either alone or in combination with the BH(4) precursor L-sepiapterin (SEP, 20 microM), or the BH(4) synthesis inhibitor 2,4-diamino-6-hydroxypyrimidine (DAHP, 5 mM), toxic effects were assessed by HPLC analysis of medium and tissues, cellular propidium iodide (PI) uptake, lactate dehydrogenase (LDH) efflux, as well as stereological counting of tyrosine-hydroxylase (TH) positive cells. Thirty micromolar BSO produced 91% GSH and 81% GABA depletion and general cell death, but no significant effect on medium homovanillic acid (HVA) or tissue dopamine (DA) levels. SEP prevented or delayed GABA depletion, PI uptake and LDH efflux by BSO, whereas DAHP in combination with BSO caused (almost) complete loss of medium HVA, tissue DA and TH positive cells. We suggest that under pathological conditions with reduced GSH, impaired synthesis of BH(4) may accelerate nigral cell loss, whereas increasing intracellular BH(4) may provide protection to both DA and GABA neurons. Topics: Animals; Animals, Newborn; Biopterins; Buthionine Sulfoximine; Coculture Techniques; Dopamine; Enzyme Inhibitors; gamma-Aminobutyric Acid; Glutathione; Homovanillic Acid; Hypoxanthines; Neostriatum; Organ Culture Techniques; Oxidative Stress; Parkinson Disease; Pteridines; Pterins; Rats; Substantia Nigra; Tyrosine 3-Monooxygenase | 2002 |
Preferential resistance of dopaminergic neurons to the toxicity of glutathione depletion is independent of cellular glutathione peroxidase and is mediated by tetrahydrobiopterin.
Depletion of glutathione in the substantia nigra is one of the earliest changes observed in Parkinson's disease (PD) and could initiate dopaminergic neuronal degeneration. Nevertheless, experimental glutathione depletion does not result in preferential toxicity to dopaminergic neurons either in vivo or in vitro. Moreover, dopaminergic neurons in culture are preferentially resistant to the toxicity of glutathione depletion, possibly owing to differences in cellular glutathione peroxidase (GPx1) function. However, mesencephalic cultures from GPx1-knockout and wild-type mice were equally susceptible to the toxicity of glutathione depletion, indicating that glutathione also has GPx1-independent functions in neuronal survival. In addition, dopaminergic neurons were more resistant to the toxicity of both glutathione depletion and treatment with peroxides than nondopaminergic neurons regardless of their GPx1 status. To explain this enhanced antioxidant capacity, we hypothesized that tetrahydrobiopterin (BH(4)) may function as an antioxidant in dopaminergic neurons. In agreement, inhibition of BH(4) synthesis increased the susceptibility of dopaminergic neurons to the toxicity of glutathione depletion, whereas increasing BH(4) levels completely protected nondopaminergic neurons against it. Our results suggest that BH(4) functions as a complementary antioxidant to the glutathione/glutathione peroxidase system and that changes in BH(4) levels may contribute to the pathogenesis of PD. Topics: Animals; Antioxidants; Biopterins; Buthionine Sulfoximine; Cell Survival; Dopamine; Enzyme Inhibitors; Female; Glutathione; Glutathione Peroxidase; Male; Mesencephalon; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons; Parkinson Disease; Pregnancy; Pteridines; Pterins; Pyrazoles; Rats; Rats, Sprague-Dawley; tert-Butylhydroperoxide | 2000 |