sepantronium has been researched along with Mouth-Neoplasms* in 6 studies
6 other study(ies) available for sepantronium and Mouth-Neoplasms
Article | Year |
---|---|
YM155 Down-Regulates Survivin and Induces P53 Up-Regulated Modulator of Apoptosis (PUMA)-Dependent in Oral Squamous Cell Carcinoma Cells.
BACKGROUND YM155, which inhibits the anti-apoptotic protein survivin, is known to exert anti-tumor effects in various cancers. However, there were few reports describing the inhibitory effect of YM155 on human oral squamous cell carcinoma (OSCC) cells that highly express survivin. In this study, we investigated the anti-tumor effects of YM155 on OSCC cells and then examined its molecular mechanisms. MATERIAL AND METHODS SCC9 cells of OSCC were treated with series of concentrations of YM155 (0.01, 0.1, 1, and 10 ng/ml) for 6, 12, and 24 h. The effect of YM155 on survival of SCC9 cells was detected by MTT and colony formation assay. Cell apoptosis was detected by flow cytometric analysis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) assays. Western blot was used to detect the protein expression of survivin, p53, and PUMA. Caspase-3 activity was measured by cleavage of the caspase-3 substrate. To test the role of PUMA and caspase-3 on YM155-induced apoptosis and growth inhibition, the SCC9 cells was transfected with PUMA siRNA or caspase-3 siRNA or control siRNA for 16 h before YM155 (1 and 10 ng/ml) treatment for 24 h. In addition, we also investigated the effect of YM155 in an in vivo xenograft model. RESULTS Treatment of YM155 efficiently reduced survivin expression and increased PUMA expression and caspase-3 activation in the SCC9 cells. YM155 treatment resulted in 18-86% decrease in cell viability, 10-60% decrease in colony numbers, and 8-40% increase in cell apoptosis (p<0.05 and p<0.01). However, the induction of cell apoptosis growth inhibition was reversed by PUMA siRNA or caspase-3 transfection. In addition, animals treated with YM155 showed more than 60% tumor growth inhibition compared to the controls (p<0.05). CONCLUSIONS YM155 is a potent inhibitor of progression of SCC9 cells, which could be due to attenuation of survivin, and activation of the PUMA/caspase-3 cellular signaling processes. This study suggests that YM155 may be a potential molecular target with therapeutic relevance for the treatment of OSCC. Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Carcinoma, Squamous Cell; Caspase 3; Cell Line, Tumor; Cell Proliferation; Cell Survival; Down-Regulation; Head and Neck Neoplasms; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice; Mice, Nude; Mouth Neoplasms; Naphthoquinones; Proto-Oncogene Proteins; Squamous Cell Carcinoma of Head and Neck; Survivin; Transcriptional Activation; Xenograft Model Antitumor Assays | 2017 |
Rapamycin enhances the anti-angiogenesis and anti-proliferation ability of YM155 in oral squamous cell carcinoma.
YM155, a small molecule inhibitor of survivin, has been studied in many tumors. It has been shown that YM155 inhibited oral squamous cell carcinoma through promoting apoptosis and autophagy and inhibiting proliferation. It was found that YM155 also inhibited the oral squamous cell carcinoma-mediated angiogenesis through the inactivation of the mammalian target of rapamycin pathway. Rapamycin, a mammalian target of rapamycin inhibitor, played an important role in the proliferation and angiogenesis of oral squamous cell carcinoma cell lines. In our study, cell proliferation assay, transwell assay, tube formation assay, and western blot assay were used to investigate the synergistic effect of rapamycin on YM155 in oral squamous cell carcinoma. Either in vitro or in vivo, rapamycin and YM155 exerted a synergistic effect on the inhibition of survivin and vascular endothelial growth factor through mammalian target of rapamycin pathway. Overall, our results revealed that low-dose rapamycin strongly promoted the sensitivity of oral squamous cell carcinoma cell lines to YM155. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice; Mouth Neoplasms; Naphthoquinones; Neovascularization, Pathologic; Sirolimus; Survivin; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays | 2017 |
Targeting of Survivin Pathways by YM155 Inhibits Cell Death and Invasion in Oral Squamous Cell Carcinoma Cells.
Specific overexpression in cancer cells and evidence of oncogenic functions make Survivin an attractive target in cancer therapy. The small molecule compound YM155 has been described as the first "Survivin suppressant" but molecular mechanisms involved in its biological activity and its clinical potential remain obscure. Survivin protein plays critical roles in oral squamous cell carcinoma (OSCC), suggesting that YM155 would be extremely valuable for OSCC. In this study, we tested our hypothesis whether YM155 could be an effective inhibitor of cell growth, invasion and angiogenesis in oral squamous cell carcinoma (OSCC) cells.. SCC9 and SCC25 were treated with different concentration of YM155 for indicated time. Using MTT assay and flow cytometry analysis to detect cell growth and apoptosis; Using transwell and Wound healing assay to detect migration and invasion; Using reverse transcription-PCR, Western blotting and electrophoretic mobility shift assay for measuring gene and protein expression, and DNA binding activity of NF-x03BA;B.. YM155 inhibited survivin-rich expressed SCC9 cell growth in a dose- and time dependent manner. This was accompanied by increased apoptosis and concomitant attenuation of NF-x03BA;B and downregulation of NF-x03BA;B downstream genes MMP-9, resulting in the inhibition of SCC9 cell migration and invasion in vitro and caused antitumor activity and anti metastasis in vivo. YM155 treatment did not affect cell growth, apoptosis and invasion of surviving-poor expressed SCC25 cells in vitro.. YM155 is a potent inhibitor of progression of SCC9 cells, which could be due to attenuation of survivin signaling processes. Our findings provide evidence showing that YM155 could act as a small molecule survivin inhibitor on survivin-rich expressed SCC9 cells in culture as well as when grown as tumor in a xenograft model. We also suggest that survivin could be further developed as a potential therapeutic agent for the treatment of survivin-rich expressed OSCC. Topics: Animals; Antineoplastic Agents; Apoptosis; Carcinoma, Squamous Cell; Cell Death; Cell Line, Tumor; Cell Movement; Cell Proliferation; Female; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice, SCID; Mouth; Mouth Neoplasms; Naphthoquinones; Neoplasm Invasiveness; NF-kappa B; Signal Transduction; Survivin | 2016 |
Down-regulation of Akt by methanol extracts of Impatiens balsamina L. promotes apoptosis in human oral squamous cell carcinoma cell lines.
The apoptotic activity of methanol extracts of Impatiens balsamina L. (MEIB) and related mechanisms in human oral squamous cell carcinoma (OSCC) cells have been systematically investigated.. The effects of MEIB on human OSCC cell lines were investigated using trypan blue exclusion assay, MTS assay, Western blot, 4'-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead assay, Immunohistochemistry, reverse transcription-polymerase chain reaction, and promoter assay.. MEIB decreased cell viability and induced apoptosis in HSC-4 cells. Higher levels of p-Akt expression were observed in OSCC than in normal oral mucosa (NOM), and it correlated with poor survival of the patients. MEIB dephosphorylated p-Akt and decreased Akt expression through proteasome-dependent degradation. LY294002 (PI3K inhibitor) decreased p-Akt and Akt, resulting in enhancing MEIB-induced apoptosis. MEIB down-regulated the expression level of survivin protein at the transcriptional level and YM155 (survivin inhibitor) decreased survivin, which facilitated MEIB-induced apoptosis. MEIB and LY294002 significantly increased Bax, thereby inducing the conformational change, mitochondrial translocation, and oligomerization. In addition, MEIB-induced growth inhibition and apoptosis in OSC-20, another human OSCC cells were mediated by regulating Akt and it downstream targets, survivin and Bax.. These results suggest that MEIB may serve as a potential drug candidate for the treatment of human OSCC. Topics: Adult; Antineoplastic Agents, Phytogenic; Apoptosis; Carcinoma, Squamous Cell; Cell Line, Tumor; Chromones; Down-Regulation; Head and Neck Neoplasms; Humans; Imidazoles; Impatiens; Methanol; Molar, Third; Morpholines; Mouth Mucosa; Mouth Neoplasms; Naphthoquinones; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Plant Extracts; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Squamous Cell Carcinoma of Head and Neck | 2015 |
YM155 induces apoptosis through downregulation of specificity protein 1 and myeloid cell leukemia-1 in human oral cancer cell lines.
YM155 is a small-molecule pro-apoptotic agent which has shown to inhibit survivin expression and induce apoptosis in various cancer cells. In this study, we investigated the function and molecular mechanism of YM155 in human oral cancer cells.. The apoptotic effects and related signaling pathways of YM155 were evaluated using trypan blue exclusion assay, 4'-6-diamidino-2-phenylindole staining, Western blotting, RT-PCR, and siRNA.. YM155 inhibited the growth and caused caspase-dependent apoptosis in MC3 and HN22 cells. YM155 significantly suppressed the level of survivin protein expression through proteasome-dependent protein degradation to confirm its survivin-inhibiting function. YM155 reduced myeloid cell leukemia-1 (Mcl-1) protein, but it did not alter Mcl-1 mRNA. It was associated with the facilitation of lysosome-dependent protein degradation. The modifications of Mcl-1 and survivin by YM155 were caspase-independent manner. Treatment of MC-3 and HN22 cells with YM155 inhibited specificity protein 1 (Sp1) and the knockdown of Sp1 by siRNA demonstrated that Mcl-1 was regulated by Sp1 protein.. We demonstrated the novel mechanism that YM155 causes apoptosis of human oral cancer cell lines through downregulation of Sp1 and Mcl-1. Therefore, it may be a potential anticancer drug candidate for the treatment of oral cancer. Topics: Antineoplastic Agents; Apoptosis; Blotting, Western; Caspase 3; Cell Line, Tumor; Cell Proliferation; Cell Survival; Down-Regulation; Gene Knockdown Techniques; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mouth Neoplasms; Myeloid Cell Leukemia Sequence 1 Protein; Naphthoquinones; RNA, Small Interfering; Sp1 Transcription Factor; Survivin | 2015 |
Induction of autophagy-dependent cell death by the survivin suppressant YM155 in salivary adenoid cystic carcinoma.
Adenoid cystic carcinoma (ACC) is one of the most common malignancies of the major and minor salivary glands. However, the molecular mechanism underlying the aggressive growth of human salivary ACC remains unclear. In the present study, we showed that survivin, which belongs to the family of inhibitors of apoptosis, is closely related to the high expression of CDK4 and cyclin D1 in human ACC specimens. By employing the small-molecule drug YM155, we found that the inhibition of survivin in ACC cells caused significant cell death and induced autophagy. Chloroquine, an autophagy inhibitor, prevented cell death induced by YM155, suggesting YM155-induced autophagy contributed to the cell death effects in ACC cells. More importantly, evidence obtained from a xenograft model using ACC-2 cells proved the occurrence of YM155-induced autophagy and cell death in vivo was correlated with the suppression of Erk1/2 and S6 activation as well as increased TFEB nuclear translocation. Taken together, our results indicate YM155 is a novel inducer of autophagy-dependent cell death and possesses therapeutic potential in ACC. Topics: Animals; Antineoplastic Agents; Apoptosis; Autophagy; Carcinoma, Adenoid Cystic; Cell Line, Tumor; Female; Heterografts; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice; Mice, Inbred BALB C; Mice, Nude; Mouth Neoplasms; Naphthoquinones; Neoplasm Transplantation; Phosphorylation; Salivary Glands; Signal Transduction; Survivin | 2014 |