sepantronium has been researched along with Glioblastoma* in 4 studies
4 other study(ies) available for sepantronium and Glioblastoma
Article | Year |
---|---|
Nuclear Magnetic Resonance Spectroscopy to Identify Metabolite Biomarkers of Nonresponsiveness to Targeted Therapy in Glioblastoma Tumor Stem Cells.
Glioblastoma is the most common and malignant brain tumor, and current therapies confer only modest survival benefits. A major obstacle is our ability to monitor treatment effect on tumors. Current imaging modalities are ambiguous, and repeated biopsies are not encouraged. To scout for markers of treatment response, we used NMR spectroscopy to study the effects of a survivin inhibitor on the metabolome of primary glioblastoma cancer stem cells. Applying high resolution NMR spectroscopy ( Topics: Antineoplastic Agents; Biomarkers, Pharmacological; Brain Neoplasms; Cell Survival; Citric Acid; Citric Acid Cycle; Glioblastoma; Humans; Imidazoles; Lactic Acid; Magnetic Resonance Spectroscopy; Metabolome; Molecular Targeted Therapy; Naphthoquinones; Neoplastic Stem Cells; Primary Cell Culture; Principal Component Analysis; Survivin | 2019 |
A case study of a long-term glioblastoma survivor with unmethylated
Effective treatments that extend survival of malignant brain tumor glioblastoma (GBM) have not changed in more than a decade; however, there exists a minority patient group (<5%) whose survival is longer than 3 yr. We herein present a case report of a long-term surviving 51-yr-old female diagnosed with a Topics: Brain Neoplasms; DNA Mismatch Repair; Drug Screening Assays, Antitumor; Female; Gene Regulatory Networks; Genotype; Germ-Line Mutation; Glioblastoma; Humans; Imidazoles; Middle Aged; Mutation; Naphthoquinones; Neoplasm Recurrence, Local; Phenotype; Whole Genome Sequencing | 2019 |
YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma.
Radiotherapy constitutes a standard arm of therapy in the multimodal treatment of patients with glioblastoma (GBM). Ironically, studies have recently revealed that radiation can augment malignant progression, by promoting migration and invasion, which make the disease especially difficult to cure. Here, we investigated the anticancer effects of YM155, a purported radiosensitizer, in GBM cell lines.. GBM cell lines U251 and U87 were treated with YM155 to assess cytotoxicity and activity of the molecule in vitro. Nude mice were implanted with cells to generate orthotopic xenografts for in vivo studies. Response of cells to treatment was examined using cell viability, immunofluorescence, wound healing, and the Transwell invasion assay. Molecules potentially mediating response were examined through western blot analysis, phospho-kinase arrays, and qPCR. Cells were transfected with siRNA knockdown and gene expression constructs to identify molecular mediators of response.. YM155 reduced viability of U251 and U87 cells and enhanced radiosensitivity through inhibition of homologous recombination. Besides, YM155 decreased invasion caused by radiation and led to expression changes in molecular markers associated with EMT. STAT3 was one of 10 molecules identified on a phosphokinase array exhibiting significant change in phosphorylation under YM155 treatment. Transfection with STAT3 siRNAs or expression constructs demonstrated that EMT changes were achieved by inhibiting the phosphorylation of STAT3 and were survivin-independent. Finally, combining YM155 and radiation in orthotopic xenografts reduced growth and prolonged overall survival of animals.. YM155 decreased radiation-induced invasion in GBM cell lines in vitro and in vivo through inhibition of STAT3. Topics: Animals; Cell Line, Tumor; Cell Proliferation; Cell Survival; Epithelial-Mesenchymal Transition; Glioblastoma; Homologous Recombination; Humans; Imidazoles; Mice, Nude; Naphthoquinones; Neoplasm Invasiveness; STAT3 Transcription Factor; Survivin | 2018 |
Novel survivin inhibitor YM155 elicits cytotoxicity in glioblastoma cell lines with normal or deficiency DNA-dependent protein kinase activity.
Pediatric glioblastoma is a malignant disease with an extremely poor clinical outcome. Patients usually suffer from resistance to radiation therapy, so targeted drug treatment may be a new possibility for glioblastoma therapy. Survivin is also overexpressed in glioblastoma. YM155, a novel small-molecule survivin inhibitor, has not been examined for its use in glioblastoma therapy.. The human glioblastoma cell line M059K, which expresses normal DNA-dependent protein kinase (DNA-PK) activity and is radiation-resistant, and M059J, which is deficient in DNA-PK activity and radiation-sensitive, were used in the study. Cell viability, DNA fragmentation, and the expression of survivin and securin following YM155 treatment were examined using MTT (methylthiazolyldiphenyl-tetrazolium) assay, ELISA assay, and Western blot analysis, respectively.. YM155 caused a concentration-dependent cytotoxic effect, inhibiting the cell viability of both M059K and M059J cells by 70% after 48 hours of treatment with 50 nM YM155. The half-maximal inhibitory concentration (IC50) was around 30-35 nM for both cell lines. Apoptosis was determined to have occurred in both cell lines because immunoreactive signals from the DNA fragments in the cytoplasm were increased 24 hours after treatment with 30 nM YM155. The expression of survivin and securin in the M059K cells was greater than that measured in the M059J cells. Treatment with 30 nM YM155, for both 24 and 48 hours, significantly suppressed the expression of survivin and securin in both cell lines.. The novel survivin inhibitor YM155 elicits potent cytotoxicity in glioblastoma cells in vitro via DNA-PK-independent mechanisms. YM155 could be used as a new therapeutic agent for the treatment of human glioblastomas. Topics: Apoptosis; Brain Neoplasms; Cell Line, Tumor; Cell Survival; DNA-Activated Protein Kinase; Glioblastoma; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Naphthoquinones; Neoplasm Proteins; Securin; Survivin | 2012 |