sepantronium has been researched along with Cell-Transformation--Neoplastic* in 1 studies
1 other study(ies) available for sepantronium and Cell-Transformation--Neoplastic
Article | Year |
---|---|
Radiosynthesis, biodistribution and imaging of [11C]YM155, a novel survivin suppressant, in a human prostate tumor-xenograft mouse model.
Sepantronium bromide (YM155) is an antitumor drug in development and is a first-in-class chemical entity, which is a survivin suppressant. We developed a radiosynthesis of [(11)C]YM155 to non-invasively evaluate its tissue and tumor distribution in mice bearing human prostate tumor xenografts.. Methods utilizing [(11)C]acetyl chloride and [(11)C]methyl triflate, both accessible with automated radiosynthesis boxes, were evaluated. The O-methylation of ethanolamine-alkolate with [(11)C]methyl triflate proved to be the key development toward a rapid and efficient process. The whole-body distribution of [(11)C]YM155 in PC-3 xenografted mice was examined using a planar positron imaging system (PPIS).. Sufficient quantities of radiopharmaceutical grade [(11)C]YM155 were produced for our PET imaging and distribution studies. The decay corrected (EOB) radiochemical yield was 16-22%, within a synthesis time of 47 min. The radiochemical purity was higher than 99%, and the specific activity was 29-60 GBq/μmol (EOS). High uptake levels of radioactivity (%ID/g, mean±SE) were observed in tumor (0.0613±0.0056), kidneys (0.0513±0.0092), liver (0.0368±0.0043) and cecum (0.0623±0.0070). The highest tumor uptake was observed at an early time point (from 10 min after) following injection. Tumor-to-blood and tumor-to-muscle uptake ratios of [(11)C]YM155, at 40 min after injection, were 26.5 (±2.9) and 25.6 (±3.6), respectively.. A rapid method for producing a radiopharmaceutical grade [(11)C]YM155 was developed. An in vivo distribution study using PPIS showed high uptake of [(11)C]YM155 in tumor tissue. Our methodology may facilitate the evaluation and prediction of response to YM155, when given as an anti-cancer agent. Topics: Animals; Antineoplastic Agents; Carbon Radioisotopes; Cell Line, Tumor; Cell Transformation, Neoplastic; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Male; Mice; Naphthoquinones; Positron-Emission Tomography; Prostatic Neoplasms; Radiochemistry; Survivin; Tissue Distribution; Whole Body Imaging | 2013 |