sepantronium and Carcinoma--Squamous-Cell

sepantronium has been researched along with Carcinoma--Squamous-Cell* in 11 studies

Other Studies

11 other study(ies) available for sepantronium and Carcinoma--Squamous-Cell

ArticleYear
Commitment toward cell death by activation of autophagy with survivin inhibitor YM155 in two canine squamous cell carcinoma cell lines with high expression of survivin.
    Research in veterinary science, 2021, Volume: 135

    Canine squamous cell carcinoma (SCC) is difficult to treat if local therapy is not feasible. Recently, survivin inhibitor YM155 was shown to have growth inhibitory activity on high-survivin-expressing canine SCC cell lines HAPPY and SQ4. Here, the mechanisms underlying the effect of YM155 on these cell lines were investigated. YM155 induced cleavage of poly(ADP-ribose) polymerase (PARP) in HAPPY, but not in SQ4 cells. Analyzing two autophagy markers, the level of microtubule-associated protein 1 light chain 3 (LC3)-II and the LC3-II/LC3-I ratio, indicated that YM155 activates autophagy in both cell lines, and this activation occurs prior to PARP cleavage in HAPPY cells. Moreover, inhibition of autophagic flux by chloroquine almost completely prevented the toxic effect of YM155 in both cell lines. Although there are differences in their eventual cell death type, both cell lines may be committed to cell death by activation of autophagy with YM155. Activation of autophagy is likely to be a key mechanism in the growth-inhibitory effects of YM155 in these lines. These data provide new insights into the cytotoxic mechanism of YM155 in canine SCC cells.

    Topics: Amebicides; Animals; Antineoplastic Agents; Apoptosis; Autophagy; Biomarkers, Tumor; Carcinoma, Squamous Cell; Cell Death; Cell Line, Tumor; Chloroquine; Dog Diseases; Dogs; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Naphthoquinones; Survivin

2021
Canine squamous cell carcinoma cell lines with high expression of survivin are sensitive to survivin inhibitor YM155.
    Veterinary journal (London, England : 1997), 2018, Volume: 240

    Treatment of unresectable canine squamous cell carcinoma (SCC) remains challenging and new therapeutic strategies are needed. Survivin is a member of the inhibitor of apoptosis protein family and its inhibitor, YM155, is a potential anti-tumour agent. In the present study, 10 canine tumour cell lines (representing eight different tumour types) were screened for sensitivity to YM155; the drug potently inhibited the growth of the HAPPY SCC cell line. The growth inhibitory properties of YM155 were then examined in more detail using a panel of seven SCC cell lines. YM155 inhibited the growth of the cell lines HAPPY and SQ4; in contrast to the other lines in the panel, these two cell lines had high levels of expression of survivin. In HAPPY cells, YM155 inhibited expression of the survivin gene at the transcriptional level. In contrast, YM155 down-regulated survivin at the post-transcriptional level in SQ4 cells. YM155 suppressed cell growth in HAPPY cells, mostly via induction of apoptosis, but this was not the case in SQ4 cells. Two canine SCC cell lines with high cellular expression of survivin were sensitive to YM155. The possible underlying mechanisms of the cytotoxic effect of YM155 in these cell lines were different. One cell line had down-regulation of survivin mRNA and protein expression, associated with induction of apoptotic cell death. The other cell line had post-transcriptional down-regulation of survivin expression and subsequent induction of non-apoptotic cell death. Targeting survivin with YM155 is a potential approach for the treatment of canine SCCs with high expression of survivin.

    Topics: Animals; Carcinoma, Squamous Cell; Cell Line, Tumor; Dog Diseases; Dogs; Imidazoles; Naphthoquinones; Survivin

2018
YM155 Down-Regulates Survivin and Induces P53 Up-Regulated Modulator of Apoptosis (PUMA)-Dependent in Oral Squamous Cell Carcinoma Cells.
    Medical science monitor : international medical journal of experimental and clinical research, 2017, Apr-24, Volume: 23

    BACKGROUND YM155, which inhibits the anti-apoptotic protein survivin, is known to exert anti-tumor effects in various cancers. However, there were few reports describing the inhibitory effect of YM155 on human oral squamous cell carcinoma (OSCC) cells that highly express survivin. In this study, we investigated the anti-tumor effects of YM155 on OSCC cells and then examined its molecular mechanisms. MATERIAL AND METHODS SCC9 cells of OSCC were treated with series of concentrations of YM155 (0.01, 0.1, 1, and 10 ng/ml) for 6, 12, and 24 h. The effect of YM155 on survival of SCC9 cells was detected by MTT and colony formation assay. Cell apoptosis was detected by flow cytometric analysis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) assays. Western blot was used to detect the protein expression of survivin, p53, and PUMA. Caspase-3 activity was measured by cleavage of the caspase-3 substrate. To test the role of PUMA and caspase-3 on YM155-induced apoptosis and growth inhibition, the SCC9 cells was transfected with PUMA siRNA or caspase-3 siRNA or control siRNA for 16 h before YM155 (1 and 10 ng/ml) treatment for 24 h. In addition, we also investigated the effect of YM155 in an in vivo xenograft model. RESULTS Treatment of YM155 efficiently reduced survivin expression and increased PUMA expression and caspase-3 activation in the SCC9 cells. YM155 treatment resulted in 18-86% decrease in cell viability, 10-60% decrease in colony numbers, and 8-40% increase in cell apoptosis (p<0.05 and p<0.01). However, the induction of cell apoptosis growth inhibition was reversed by PUMA siRNA or caspase-3 transfection. In addition, animals treated with YM155 showed more than 60% tumor growth inhibition compared to the controls (p<0.05). CONCLUSIONS YM155 is a potent inhibitor of progression of SCC9 cells, which could be due to attenuation of survivin, and activation of the PUMA/caspase-3 cellular signaling processes. This study suggests that YM155 may be a potential molecular target with therapeutic relevance for the treatment of OSCC.

    Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Carcinoma, Squamous Cell; Caspase 3; Cell Line, Tumor; Cell Proliferation; Cell Survival; Down-Regulation; Head and Neck Neoplasms; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice; Mice, Nude; Mouth Neoplasms; Naphthoquinones; Proto-Oncogene Proteins; Squamous Cell Carcinoma of Head and Neck; Survivin; Transcriptional Activation; Xenograft Model Antitumor Assays

2017
Rapamycin enhances the anti-angiogenesis and anti-proliferation ability of YM155 in oral squamous cell carcinoma.
    Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 2017, Volume: 39, Issue:6

    YM155, a small molecule inhibitor of survivin, has been studied in many tumors. It has been shown that YM155 inhibited oral squamous cell carcinoma through promoting apoptosis and autophagy and inhibiting proliferation. It was found that YM155 also inhibited the oral squamous cell carcinoma-mediated angiogenesis through the inactivation of the mammalian target of rapamycin pathway. Rapamycin, a mammalian target of rapamycin inhibitor, played an important role in the proliferation and angiogenesis of oral squamous cell carcinoma cell lines. In our study, cell proliferation assay, transwell assay, tube formation assay, and western blot assay were used to investigate the synergistic effect of rapamycin on YM155 in oral squamous cell carcinoma. Either in vitro or in vivo, rapamycin and YM155 exerted a synergistic effect on the inhibition of survivin and vascular endothelial growth factor through mammalian target of rapamycin pathway. Overall, our results revealed that low-dose rapamycin strongly promoted the sensitivity of oral squamous cell carcinoma cell lines to YM155.

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice; Mouth Neoplasms; Naphthoquinones; Neovascularization, Pathologic; Sirolimus; Survivin; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays

2017
Survivin activates NF‑κB p65 via the IKKβ promoter in esophageal squamous cell carcinoma.
    Molecular medicine reports, 2016, Volume: 13, Issue:2

    Survivin and transcription factor p65 (NF‑κB p65) participate in the progression of esophageal squamous cell carcinoma (ESCC). However, the mechanism of NF‑κB p65 activation in ESCC remains to be elucidated. The aim of the present study was to investigate the role of survivin in the activation of NF‑κB p65 in ESCC. The expression levels of survivin, NF‑κB p65, inhibitor of nuclear factor κB kinase subunit α (IKKα) and inhibitor of nuclear factor κB kinase subunit β (IKKβ) were detected in ESCC tissue samples. Eca109 and KYSE150 cells were cultured and survivin activity was modulated via transfection with an overexpression plasmid, a small hairpin RNA plasmid and a specific inhibitor. Quantitative reverse transcription-polymerase chain reaction and western blotting assays were conducted to assess the effects of survivin on the expression levels of IKKα, IKKβ and NF‑κB p65. Cell cycle and apoptosis assays were conducted to detect surviving-dependent cellular behavior changes. In addition, the luciferase reporter gene assay and chromatin immunoprecipitation assay were conducted to determine the genomic sites responsible for surviving-induced activation of NF‑κB p65. The present study demonstrated that the expression of survivin is positively correlated with IKKα and IKKβ in ESCC tissues. Survivin affected the mRNA and protein expression levels of IKKα, IKKβ, and NF‑κB p65 in Eca109 and KYSE150 cells. Furthermore, survivin increased the transcriptional activity of the IKKβ promoter and bound to the IKKβ promoter region in the Eca109 cells. Downregulation of survivin arrested the cell cycle at the G2/M phase and induced apoptosis. Results of the present study suggest that survivin activates NF‑κB p65 in Eca109 cells via binding to the IKKβ promoter region and upregulating IKKβ promoter transcriptional activity. Survivin overexpression activates NF‑κB p65, which is important in the acquisition and maintenance of the oncogenic characteristics of ESCC.

    Topics: Apoptosis; Carcinoma, Squamous Cell; Cell Count; Cell Line, Tumor; Cell Survival; Chromatin Immunoprecipitation; Down-Regulation; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; G2 Phase Cell Cycle Checkpoints; Gene Knockdown Techniques; Humans; I-kappa B Kinase; Imidazoles; Inhibitor of Apoptosis Proteins; Naphthoquinones; Promoter Regions, Genetic; Protein Binding; RNA, Small Interfering; Survivin; Transcription Factor RelA; Up-Regulation

2016
Targeting of Survivin Pathways by YM155 Inhibits Cell Death and Invasion in Oral Squamous Cell Carcinoma Cells.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2016, Volume: 38, Issue:6

    Specific overexpression in cancer cells and evidence of oncogenic functions make Survivin an attractive target in cancer therapy. The small molecule compound YM155 has been described as the first "Survivin suppressant" but molecular mechanisms involved in its biological activity and its clinical potential remain obscure. Survivin protein plays critical roles in oral squamous cell carcinoma (OSCC), suggesting that YM155 would be extremely valuable for OSCC. In this study, we tested our hypothesis whether YM155 could be an effective inhibitor of cell growth, invasion and angiogenesis in oral squamous cell carcinoma (OSCC) cells.. SCC9 and SCC25 were treated with different concentration of YM155 for indicated time. Using MTT assay and flow cytometry analysis to detect cell growth and apoptosis; Using transwell and Wound healing assay to detect migration and invasion; Using reverse transcription-PCR, Western blotting and electrophoretic mobility shift assay for measuring gene and protein expression, and DNA binding activity of NF-x03BA;B.. YM155 inhibited survivin-rich expressed SCC9 cell growth in a dose- and time dependent manner. This was accompanied by increased apoptosis and concomitant attenuation of NF-x03BA;B and downregulation of NF-x03BA;B downstream genes MMP-9, resulting in the inhibition of SCC9 cell migration and invasion in vitro and caused antitumor activity and anti metastasis in vivo. YM155 treatment did not affect cell growth, apoptosis and invasion of surviving-poor expressed SCC25 cells in vitro.. YM155 is a potent inhibitor of progression of SCC9 cells, which could be due to attenuation of survivin signaling processes. Our findings provide evidence showing that YM155 could act as a small molecule survivin inhibitor on survivin-rich expressed SCC9 cells in culture as well as when grown as tumor in a xenograft model. We also suggest that survivin could be further developed as a potential therapeutic agent for the treatment of survivin-rich expressed OSCC.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Carcinoma, Squamous Cell; Cell Death; Cell Line, Tumor; Cell Movement; Cell Proliferation; Female; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice, SCID; Mouth; Mouth Neoplasms; Naphthoquinones; Neoplasm Invasiveness; NF-kappa B; Signal Transduction; Survivin

2016
Down-regulation of Akt by methanol extracts of Impatiens balsamina L. promotes apoptosis in human oral squamous cell carcinoma cell lines.
    Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 2015, Volume: 44, Issue:6

    The apoptotic activity of methanol extracts of Impatiens balsamina L. (MEIB) and related mechanisms in human oral squamous cell carcinoma (OSCC) cells have been systematically investigated.. The effects of MEIB on human OSCC cell lines were investigated using trypan blue exclusion assay, MTS assay, Western blot, 4'-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead assay, Immunohistochemistry, reverse transcription-polymerase chain reaction, and promoter assay.. MEIB decreased cell viability and induced apoptosis in HSC-4 cells. Higher levels of p-Akt expression were observed in OSCC than in normal oral mucosa (NOM), and it correlated with poor survival of the patients. MEIB dephosphorylated p-Akt and decreased Akt expression through proteasome-dependent degradation. LY294002 (PI3K inhibitor) decreased p-Akt and Akt, resulting in enhancing MEIB-induced apoptosis. MEIB down-regulated the expression level of survivin protein at the transcriptional level and YM155 (survivin inhibitor) decreased survivin, which facilitated MEIB-induced apoptosis. MEIB and LY294002 significantly increased Bax, thereby inducing the conformational change, mitochondrial translocation, and oligomerization. In addition, MEIB-induced growth inhibition and apoptosis in OSC-20, another human OSCC cells were mediated by regulating Akt and it downstream targets, survivin and Bax.. These results suggest that MEIB may serve as a potential drug candidate for the treatment of human OSCC.

    Topics: Adult; Antineoplastic Agents, Phytogenic; Apoptosis; Carcinoma, Squamous Cell; Cell Line, Tumor; Chromones; Down-Regulation; Head and Neck Neoplasms; Humans; Imidazoles; Impatiens; Methanol; Molar, Third; Morpholines; Mouth Mucosa; Mouth Neoplasms; Naphthoquinones; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Plant Extracts; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Squamous Cell Carcinoma of Head and Neck

2015
Dual induction of apoptotic and autophagic cell death by targeting survivin in head neck squamous cell carcinoma.
    Cell death & disease, 2015, May-28, Volume: 6

    Survivin is ubiquitously expressed in patients with head neck squamous cell carcinoma (HNSCC) and is associated with poor survival and chemotherapy resistance. Sepantronium bromide (YM155) is a selective survivin suppressant that exhibits potent antitumor activities by inducing apoptosis and autophagy in various types of cancer. However, the curative effects and underlying mechanisms of YM155 in HNSCC remain unclear. This study showed that survivin overexpression positively correlated with p-S6, p-Rb and LAMP2 but negatively correlated with the autophagic marker LC3 in human HNSCC tissues. In vitro studies revealed that YM155 triggered apoptosis of HNSCC cells in mitochondria and death receptor-dependent manner. The treatment also significantly enhanced autophagy by upregulating Beclin1, which led to cell death. YM155 not only downregulated the expression of survivin but also remarkably suppressed the activation of the mTOR signaling pathway in vitro and in vivo. YM155 displayed potent antitumor activities in both CAL27 xenograft and transgenic HNSCC mice models by delaying tumor onset and suppressing tumor growth. Furthermore, YM155 combined with docetaxel promoted tumor regression better than either treatment alone without causing considerable body weight loss in the HNSCC xenograft models. Overall, targeting survivin by YM155 can benefit HNSCC therapy by increasing apoptotic and autophagic cell death, and suppressing prosurvival pathways.

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Beclin-1; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Docetaxel; Drug Resistance, Neoplasm; Head and Neck Neoplasms; Humans; Imidazoles; In Situ Nick-End Labeling; Inhibitor of Apoptosis Proteins; Lysosomal-Associated Membrane Protein 2; Membrane Proteins; Mice; Mice, Knockout; Mice, Nude; Microtubule-Associated Proteins; Mitochondria; Naphthoquinones; Phosphorylation; Retinoblastoma Protein; Signal Transduction; Squamous Cell Carcinoma of Head and Neck; Survivin; Tamoxifen; Taxoids; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays

2015
YM155, a survivin suppressant, triggers PARP-dependent cell death (parthanatos) and inhibits esophageal squamous-cell carcinoma xenografts in mice.
    Oncotarget, 2015, Jul-30, Volume: 6, Issue:21

    Here we demonstrated that sepantronium bromide (YM155), a survivin suppressant, inhibited esophageal squamous-cell carcinoma (ESCC) growth in mice bearing human ESCC xenografts without affecting body weight. In cell culture, YM155 decreased survivin levels and caused PARP-1 activation, poly-ADP polymer formation, and AIF translocation from the cytosol to the nucleus. Genetic knockdown of PARP-1 or AIF abrogated YM155-induced parthanatos cell death. Furthermore, FOS, JUN and c-MYC gene transcription, which is stimulated by activated PARP-1, was increased following YM155 treatment. Our data demonstrate that YM155 did not trigger apoptosis, but induced parthanatos, a cell death dependent on PARP-1 hyper-activation, and support clinical development of YM155 in ESCC.

    Topics: Animals; Blotting, Western; Carcinoma, Squamous Cell; Cell Death; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Esophageal Neoplasms; Female; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice, Nude; Microscopy, Electron, Transmission; Microscopy, Fluorescence; Naphthoquinones; Oligonucleotide Array Sequence Analysis; Poly(ADP-ribose) Polymerases; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Survivin; Tumor Burden; Xenograft Model Antitumor Assays

2015
Small-molecule survivin inhibitor YM155 enhances radiosensitization in esophageal squamous cell carcinoma by the abrogation of G2 checkpoint and suppression of homologous recombination repair.
    Journal of hematology & oncology, 2014, Aug-20, Volume: 7

    Survivin is overexpressed in cancer cells and plays a crucial role in apoptosis evasion. YM155, a small-molecule inhibitor of survivin, could enhance the cytotoxicity of various DNA-damaging agents. Here, we evaluated the radiosensitizaion potential of YM155 in human esophageal squamous cell carcinoma (ESCC).. Cell viability was determined by CCK8 assay. The radiosensitization effect of YM155 was evaluated by clonogenic survival and progression of tumor xenograft. Cell cycle progression was determined by flow cytometric analysis. Radiation-induced DNA double strand break (DSB) and homologous recombination repair (HRR) were detected by the staining of γ-H2AX and RAD51, respectively. Expression of survivin and cell cycle regulators was detected by Western blot analysis.. YM155 induced radiosensitization in ESCC cell lines Eca109 and TE13, associated with the abrogation of radiation induced G2/M checkpoint, impaired Rad51 focus formation, and the prolongation of γ-H2AX signaling. G2/M transition markers, including the activation of cyclinB1/Cdc2 kinase and the suppression of Cdc2 Thr14/Tyr15 phosphorylation were induced by YM155 in irradiated cells. The combination of YM155 plus irradiation delayed the growth of ESCC tumor xenografts to a greater extent compared with either treatment modality alone.. Our findings suggest that the abrogation of G2 checkpoint and the inhibition of HRR contribute to radiosensitization by YM155 in ESCC cells.

    Topics: Animals; Antineoplastic Agents; Blotting, Western; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Survival; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Flow Cytometry; Fluorescent Antibody Technique; G2 Phase Cell Cycle Checkpoints; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Naphthoquinones; Radiation-Sensitizing Agents; Recombinational DNA Repair; Survivin; Xenograft Model Antitumor Assays

2014
YM155 reverses cisplatin resistance in head and neck cancer by decreasing cytoplasmic survivin levels.
    Molecular cancer therapeutics, 2012, Volume: 11, Issue:9

    Cisplatin is one of the commonly used chemotherapeutic drugs for the treatment of head and neck squamous cell carcinoma (HNSCC). However, acquisition of cisplatin resistance is common in patients with HNSCC, and it often leads to local and distant failure. In this study, we showed that survivin expression is significantly upregulated in HNSCC primary tumors and cell lines. In addition, survivin levels were significantly higher in human papilloma virus-negative patients that normally respond poorly to cisplatin treatment. Survivin expression was further increased in cisplatin-resistant cells (CAL27-CisR) as compared with its parent cells (CAL27). Therefore, we hypothesized that targeting of survivin in HNSCC could reverse the resistant phenotype in tumor cells, thereby enhancing the therapeutic efficacy of cisplatin. We used both in vitro and in vivo models to test the efficacy of YM155, a small molecule survivin inhibitor, either as a single agent or in combination with cisplatin. YM155 significantly decreased survivin levels and cell proliferation in a dose-dependent manner. In addition, YM155 pretreatment significantly reversed cisplatin resistance in cancer cells. Interestingly, YM155 treatment altered the dynamic localization of survivin in cells by inducing a rapid reduction in cytoplasmic survivin, which plays a critical role in its antiapoptotic function. In a severe combined immunodeficient mouse xenograft model, YM155 significantly enhanced the antitumor and antiangiogenic effects of cisplatin, with no added systemic toxicity. Taken together, our results suggest a potentially novel strategy to use YM155 to overcome the resistance in tumor cells, thereby enhancing the effectiveness of the chemotherapy in HNSCC.

    Topics: Adult; Aged; Animals; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Cisplatin; Cytoplasm; Drug Synergism; Female; Head and Neck Neoplasms; Human papillomavirus 16; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Inhibitory Concentration 50; Male; Mice; Mice, SCID; Middle Aged; Naphthoquinones; Neovascularization, Pathologic; Papillomavirus Infections; Statistics, Nonparametric; Survivin; Tissue Array Analysis; Tumor Burden; Up-Regulation; Xenograft Model Antitumor Assays

2012