seocalcitol has been researched along with Lung-Neoplasms* in 4 studies
4 other study(ies) available for seocalcitol and Lung-Neoplasms
Article | Year |
---|---|
A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089.
The standard of care for unresectable lung cancer is chemoradiation. However, therapeutic options are limited and patients are rarely cured. We have previously shown that vitamin D and vitamin D analogs such as EB 1089 can enhance the response to radiation in breast cancer through the promotion of a cytotoxic form of autophagy. In A549 and H460 non-small cell lung cancer (NSCLC) cells, 1,25-D3 (the hormonally active form of vitamin D) and EB 1089 prolonged the growth arrest induced by radiation alone and suppressed proliferative recovery, which translated to a significant reduction in clonogenic survival. In H838 or H358 NSCLC cells, which lack VDR/vitamin D receptor or functional TP53, respectively, 1,25-D3 failed to modify the extent of radiation-induced growth arrest or suppress proliferative recovery post-irradiation. Sensitization to radiation in H1299 NSCLC cells was evident only when TP53 was induced in otherwise tp53-null H1299 NSCLC cells. Sensitization was not associated with increased DNA damage, decreased DNA repair or an increase in apoptosis, necrosis, or senescence. Instead sensitization appeared to be a consequence of the conversion of the cytoprotective autophagy induced by radiation alone to a novel cytostatic form of autophagy by the combination of 1,25-D3 or EB 1089 with radiation. While both pharmacological and genetic suppression of autophagy or inhibition of AMPK phosphorylation sensitized the NSCLC cells to radiation alone, inhibition of the cytostatic autophagy induced by the combination treatment reversed sensitization. Evidence for selectivity was provided by lack of radiosensitization in normal human bronchial cells and cardiomyocytes. Taken together, these studies have identified a unique cytostatic function of autophagy that appears to be mediated by VDR, TP53, and possibly AMPK in the promotion of an enhanced response to radiation by 1,25-D3 and EB 1089 in NSCLC. Topics: Antineoplastic Agents; Apoptosis; Autophagy; Calcitriol; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; DNA Damage; Humans; Lung Neoplasms; Vitamin D | 2014 |
Inhibition of prostate cancer metastasis in vivo: a comparison of 1,23-dihydroxyvitamin D (calcitriol) and EB1089.
The steroid hormone 1,25-dihydroxyvitamin D [1,25(OH)2D, also known as calcitriol] is known to inhibit the proliferation and to promote the differentiation of human prostate cancer cells. Additionally, we showed that 1,25(OH)2D markedly inhibits the invasiveness of human prostate cancer cells in vitro (G. G. Schwartz et al., Cancer Epidemiol. Biomark. Prev., 6: 727-732, 1997). These properties support the use of 1,25(OH)2D as differentiation therapy in prostate cancer. However, the use of 1,25(OH)2D in vivo is limited by the risk of hypercalcemia. We therefore compared the effects of 1,25(OH)2D and of EB1089, an analogue of 1,25(OH)2D with reduced calcemic effects, in an in vivo model of androgen-insensitive metastatic prostate cancer, the rat Dunning MAT LyLu prostate cancer model. Tumor growth and metastasis were studied using Copenhagen rats given s.c. injections of MAT LyLu cells. Fifty male rats were divided into five groups of 10 rats each. Four experimental groups received i.p. injections of low and high doses of 1,25(OH)2D and EB1089 (0.5 and 1.0 microg/kg, low and high, respectively). A control group received injections of vehicle only. Tumor volumes were measured three times per week. Rats were weighed weekly. The number of metastases to the lungs and the extent of hypercalcemia were evaluated. Compared with controls, tumor volumes were significantly smaller in all experimental groups. Similarly, the number of lung metastases (number of foci/lung) was reduced markedly by both 1,25(OH)2D and EB1089. Control rats developed 22.7 (+/- 1.98 SE) tumor foci per lung. Rats treated with 1,25(OH)2D and with EB1089 (1.0 microg/kg) developed 10.4 (+/- 2.81) and 7.70 (+/- 1.29) tumor foci, respectively (P < 0.001 and P < 0.0001, respectively; drug versus control). Compared with controls (10.79 +/- 0.1 mg/dl), serum calcium levels were significantly elevated in both 1,25(OH)2D and EB1089-treated rats (P < 0.01). However, EB1089 was significantly less calcemic than 1,25(OH)2D (12.59 +/- 0.21 mg/dl versus 14.47 +/- 0.46 mg/dl; 1.0 microg/kg; P < 0.001). Rats treated with 1,25(OH)2D showed marked weight loss: 20.0 +/- 1.9% and 26.3 +/- 1.7% of their initial weight (low and high doses, respectively, P < 0.001). Weight loss was significantly lower in rats treated with EB1089 at the high dose 8.4 (+/- 2.9) %. Moreover, rats treated with low-dose EB1089 gained 5.2 (+/- 3.7) % of their initial weight. In conclusion, 1,25(OH)2D and EB1089 showed marked and equivalent Topics: Animals; Antineoplastic Agents; Cachexia; Calcitriol; Calcium; Cell Differentiation; Cell Division; Disease Models, Animal; Humans; Hypercalcemia; Injections, Intraperitoneal; Lung Neoplasms; Male; Neoplasm Transplantation; Pharmaceutical Vehicles; Prostatic Neoplasms; Rats; Tumor Cells, Cultured; Weight Gain; Weight Loss | 1999 |
The noncalcemic vitamin D analogs EB1089 and 22-oxacalcitriol suppress serum-induced parathyroid hormone-related peptide gene expression in a lung cancer cell line.
PTH-related peptide (PTHrP) mediates the syndrome of humoral hypercalcemia of malignancy, a frequent complication of squamous cell carcinomas of the lung. This study was undertaken to determine whether 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] and two nonhypercalcemic analogs, EB1089 and 22-oxa-1,25-(OH)2D3 (22-oxacalcitriol), suppress serum- and epidermal growth factor (EGF)-induced PTHrP gene expression in a human lung squamous cancer cell line, NCI H520. PTHrP expression was up-regulated by serum and EGF in a concentration- and time-dependent manner. Nuclear run-on analysis showed that this induction was mediated via a transcriptional mechanism, and that sequences within promoter 1 were responsible. All three vitamin D3 compounds decreased both basal and serum- and EGF-induced steady state PTHrP messenger RNA and secreted peptide levels. These effects were again mediated via a transcriptional mechanism through sequences within promoter 1. All three vitamin D3 compounds also decreased the proliferation of NCI H520 cells in a concentration- and time-dependent manner. 1,25-(OH)2D3 is hypercalcemic in vivo. However, the noncalcemic analogs EB1089 and 22-oxa-1,25-(OH)2D3 have therapeutic potential, as they suppress not only the basal but also the growth factor-stimulated levels of PTHrP in a cancer cell line associated with hypercalcemia. Topics: Blood Physiological Phenomena; Calcitriol; Cell Division; Epidermal Growth Factor; Gene Expression Regulation; Humans; Lung Neoplasms; Parathyroid Hormone-Related Protein; Promoter Regions, Genetic; Proteins; Tumor Cells, Cultured | 1998 |
The noncalcemic vitamin D analogues EB1089 and 22-oxacalcitriol interact with the vitamin D receptor and suppress parathyroid hormone-related peptide gene expression.
Humoral hypercalcemia of malignancy, a frequent complication of squamous cell carcinomas of the lung, is mediated by the parathyroid hormone-related peptide (PTHrP). This study was undertaken to determine whether 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and two nonhypercalcemic analogues. EB1089 and 22-oxa-1,25(OH)(2)D(3) (OCT), suppress PTHrP gene expression in a human lung squamous cancer cell line, NCI H520. All three compounds (1) decreased steady-state PTHrP mRNA and secreted peptide levels via a transcriptional mechanism; (2) modulated promoter activity of 1,25(OH)(2)D(3)-responsive DNA sequences; and (3) activated the vitamin D receptor (VDR) both in vitro and in vivo. Thus, EB1089 and OCT inhibit PTHrP gene expression in NCI H520 cells and modulate gene expression through the same mechanism as 1,25(OH)(2)D(3), namely, activation of the VDR. 1,25(OH)(2)D(3) is hypercalcemic in vivo. However, the noncalcemic analogues EB1089 and OCT have a therapeutic potential through suppression of PTHrP gene transcription. Topics: Antineoplastic Agents; Calcitriol; Carcinoma, Squamous Cell; Gene Expression; Humans; Hypercalcemia; Lung Neoplasms; Parathyroid Hormone-Related Protein; Proteins; Receptors, Calcitriol; RNA, Messenger; Transcription, Genetic; Tumor Cells, Cultured | 1997 |