semaxinib has been researched along with Ventricular-Dysfunction* in 2 studies
2 other study(ies) available for semaxinib and Ventricular-Dysfunction
Article | Year |
---|---|
Chronic Embolic Pulmonary Hypertension Caused by Pulmonary Embolism and Vascular Endothelial Growth Factor Inhibition.
Our understanding of the pathophysiological basis of chronic thromboembolic pulmonary hypertension (CTEPH) will be accelerated by an animal model that replicates the phenotype of human CTEPH. Sprague-Dawley rats were administered a combination of a single dose each of plastic microspheres and vascular endothelial growth factor receptor antagonist in polystyrene microspheres (PE) + tyrosine kinase inhibitor SU5416 (SU) group. Shams received volume-matched saline; PE and SU groups received only microspheres or SU5416, respectively. PE + SU rats exhibited sustained pulmonary hypertension (62 ± 13 and 53 ± 14 mmHg at 3 and 6 weeks, respectively) with reduction of the ventriculoarterial coupling in vivo coincident with a large decrement in peak rate of oxygen consumption during aerobic exercise, respectively. PE + SU produced right ventricular hypokinesis, dilation, and hypertrophy observed on echocardiography, and 40% reduction in right ventricular contractile function in isolated perfused hearts. High-resolution computed tomographic pulmonary angiography and Ki-67 immunohistochemistry revealed abundant lung neovascularization and cellular proliferation in PE that was distinctly absent in the PE + SU group. We present a novel rodent model to reproduce much of the known phenotype of CTEPH, including the pivotal pathophysiological role of impaired vascular endothelial growth factor-dependent vascular remodeling. This model may reveal a better pathophysiological understanding of how PE transitions to CTEPH in human treatments. Topics: Animals; Cardiomegaly; Cell Proliferation; Chronic Disease; Heart Function Tests; Hemodynamics; Hyperplasia; Hypertension, Pulmonary; Hypoxia; Indoles; Ki-67 Antigen; Lung; Male; Microspheres; Oxygen Consumption; P-Selectin; Partial Pressure; Physical Conditioning, Animal; Plasminogen Activator Inhibitor 1; Polystyrenes; Pulmonary Embolism; Pyrroles; Rats, Sprague-Dawley; Tissue Inhibitor of Metalloproteinase-1; Vascular Endothelial Growth Factor A; Ventricular Dysfunction | 2017 |
Dehydroepiandrosterone restores right ventricular structure and function in rats with severe pulmonary arterial hypertension.
Current therapy of pulmonary arterial hypertension (PAH) is inadequate. Dehydroepiandrosterone (DHEA) effectively treats experimental pulmonary hypertension in chronically hypoxic and monocrotaline-injected rats. Contrary to these animal models, SU5416/hypoxia/normoxia-exposed rats develop a more severe form of occlusive pulmonary arteriopathy and right ventricular (RV) dysfunction that is indistinguishable from the human disorder. Thus, we tested the effects of DHEA treatment on PAH and RV structure and function in this model. Chronic (5 wk) DHEA treatment significantly, but moderately, reduced the severely elevated RV systolic pressure. In contrast, it restored the impaired cardiac index to normal levels, resulting in an improved cardiac function, as assessed by echocardiography. Moreover, DHEA treatment inhibited RV capillary rarefaction, apoptosis, fibrosis, and oxidative stress. The steroid decreased NADPH levels in the RV. As a result, the reduced reactive oxygen species production in the RV of these rats was reversed by NADPH supplementation. Mechanistically, DHEA reduced the expression and activity of Rho kinases in the RV, which was associated with the inhibition of cardiac remodeling-related transcription factors STAT3 and NFATc3. These results show that DHEA treatment slowed the progression of severe PAH in SU5416/hypoxia/normoxia-exposed rats and protected the RV against apoptosis and fibrosis, thus preserving its contractile function. The antioxidant activity of DHEA, by depleting NADPH, plays a central role in these cardioprotective effects. Topics: Animals; Apoptosis; Blood Pressure; Dehydroepiandrosterone; Fibrosis; Gene Expression; Heart Ventricles; Hypertension, Pulmonary; Hypoxia; Indoles; Male; NADP; NFATC Transcription Factors; Oxidative Stress; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; rho-Associated Kinases; STAT3 Transcription Factor; Ventricular Dysfunction | 2013 |