semaxinib has been researched along with Necrosis* in 3 studies
1 trial(s) available for semaxinib and Necrosis
Article | Year |
---|---|
SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes.
Increased bone marrow angiogenesis and vascular endothelial growth factor (VEGF) levels are adverse prognostic features in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDSs). VEGF is a soluble circulating angiogenic molecule that stimulates signaling via receptor tyrosine kinases (RTKs), including VEGF receptor 2 (VEGFR-2). AML blasts may express VEGFR-2, c-kit, and FLT3. SU5416 is a small molecule RTK inhibitor (RTKI) of VEGFR-2, c-kit, and both wild-type and mutant FLT3. A multicenter phase 2 study of SU5416 was conducted in patients with refractory AML or MDS. For a median of 9 weeks (range, 1-55 weeks), 55 patients (33 AML: 10 [30%] primary refractory, 23 [70%] relapsed; 22 MDS: 15 [68%] relapsed) received 145 mg/m2 SU5416 twice weekly intravenously. Grade 3 or 4 drug-related toxicities included headaches (14%), infusion-related reactions (11%), dyspnea (14%), fatigue (7%), thrombotic episodes (7%), bone pain (5%), and gastrointestinal disturbance (4%). There were 11 patients (20%) who did not complete 4 weeks of therapy (10 progressive disease, 1 adverse event); 3 patients (5%) who achieved partial responses; and 1 (2%) who achieved hematologic improvement. Single agent SU5416 had biologic and modest clinical activity in refractory AML/MDS. Overall median survival was 12 weeks in AML patients (range, 4-41 weeks) and not reached in MDS patients. Most observed toxicities were attributable to drug formulation (polyoxyl 35 castor oil or hyperosmolarity of the SU5416 preparation). Studies of other RTKI and/or other antiangiogenic approaches, with correlative studies to examine biologic effects, may be warranted in patients with AML/MDS. Topics: Acute Disease; Adult; Aged; Antineoplastic Agents; Apoptosis; Bone Marrow Cells; Bone Marrow Examination; Humans; Indoles; Leukemia, Myeloid; Middle Aged; Myelodysplastic Syndromes; Necrosis; Pharmacokinetics; Protein-Tyrosine Kinases; Pyrroles; Remission Induction; Salvage Therapy | 2003 |
2 other study(ies) available for semaxinib and Necrosis
Article | Year |
---|---|
Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke.
Recent studies in neonatal rodent stroke models suggest that recovery is due in part to upregulation of hypoxia-inducible factor-1-a and its downstream target, vascular endothelial growth factor. Vascular endothelial growth factor is upregulated after a hypoxic insult and is involved in neuronal survival, angiogenesis, and neurogenesis during the recovery process.. We performed a 1.5-hour transient middle cerebral artery occlusion in 10-day-old rats with injury verified by diffusion-weighted MRI during occlusion to determine the effects of vascular endothelial growth factor receptor-2 (VEGFR2) inhibition on injury, apoptosis, and angiogenesis. Two days after reperfusion, the pups received either the VEGFR inhibitor, SU5416 (10 mg/kg per dose) or vehicle (1% dimethyl sulfoxide) for 3 days.. VEGFR2 inhibition worsened injury 7 days after injury when compared with the vehicle-treated and injury-alone groups (P<0.01). Furthermore, receptor inhibition was associated with increased VEGFR2 expression 5 days after injury (P<0.05) and increased spectrin cleavage with a shift in favor of the calpain-mediated, caspase-3-independent cleavage (P<0.01). Increased areas of cleaved caspase-3 staining were seen in treated rats at 7 days (P<0.01) There were no differences in gliosis or macrophage recruitment as measured by glial fibrillary acidic protein and Iba-1 expression at this time point. Lastly, VEGFR2 inhibition did not affect the overall vessel surface area but reduced endothelial cell proliferation in injured caudate.. Inhibition of VEGFR2 signaling worsens injury, affects cell death, and reduces endothelial cell proliferation after neonatal stroke. Injury exacerbation may be in part due to a shift of cell fate from apoptosis to necrosis on the continuum spectrum of cell death as well as effects on angiogenesis in the injured brain. Topics: Angiogenesis Inhibitors; Animals; Animals, Newborn; Apoptosis; Calpain; Caspase 3; Cell Proliferation; Cerebral Arteries; Disease Models, Animal; Endothelial Cells; Indoles; Infarction, Middle Cerebral Artery; Magnetic Resonance Imaging; Necrosis; Neovascularization, Physiologic; Pyrroles; Rats; Rats, Sprague-Dawley; Stroke; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2 | 2010 |
Irradiation combined with SU5416: microvascular changes and growth delay in a human xenograft glioblastoma tumor line.
The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay.. A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment.. SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found.. Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone. Topics: Angiogenesis Inhibitors; Animals; Cell Hypoxia; Cell Line, Tumor; Combined Modality Therapy; Dose-Response Relationship, Radiation; Drug Screening Assays, Antitumor; Glioblastoma; Humans; Indoles; Mice; Mice, Inbred BALB C; Mice, Nude; Microcirculation; Necrosis; Pyrroles; Recurrence; Remission Induction; Transplantation, Heterologous | 2005 |