semapimod has been researched along with Obesity* in 2 studies
2 other study(ies) available for semapimod and Obesity
Article | Year |
---|---|
Blockade of endogenous proinflammatory cytokines ameliorates endothelial dysfunction in obese Zucker rats.
To study the role of endogenous proinflammatory cytokines in endothelial dysfunction in diabetes, we administered semapimod, an inhibitor of proinflammatory cytokine production, to obese Zucker (OZ) rats, and examined its effect on endothelium-dependent vasorelaxation. Endothelium-dependent vasorelaxation induced by acetylcholine and adrenomedullin (AM) was significantly reduced in OZ rats compared to a control group of lean Zucker rats. Semapimod significantly restored endothelium-dependent vasorelaxation in OZ rats. This effect of semapimod was well correlated with the reduction in the serum concentrations of tumor necrosis factor-alpha (TNF-alpha), interleukin-6, and C-reactive protein, as well as with the recovery of AM-induced Akt phosphorylation and cGMP production. Furthermore, acute administration of TNF-alpha significantly suppressed endothelium-dependent vasorelaxation and AM-induced cGMP production. These results implicate endogenous proinflammatory cytokines, especially TNF-alpha, in endothelial dysfunction in diabetes, and indicate that blockade of these cytokines will be a promising strategy for inhibiting the progression of vascular inflammation. Topics: Adrenomedullin; Animals; Biomarkers; C-Reactive Protein; Cyclic GMP; Endothelium, Vascular; Hydrazones; Hypertension; Immunosuppressive Agents; Interleukin-6; Male; Obesity; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Rats, Zucker; Tumor Necrosis Factor-alpha; Vasculitis; Vasodilation | 2008 |
Blockade of endogenous cytokines mitigates neointimal formation in obese Zucker rats.
It is well known that diabetes mellitus is a major risk factor for vascular diseases such as atherosclerosis and restenosis after angioplasty. It has become clear that advanced glycation end products (AGE) and their receptor (RAGE) are implicated in vascular diseases, especially in diabetes mellitus. Nevertheless, the mechanisms by which diabetes mellitus is often associated with vascular diseases remain unclear.. To study the role of endogenous cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 in the development of vascular diseases and in the expression of RAGE, we used semapimod, a pharmacological inhibitor of cytokine production, and examined its effect on neointimal formation in the femoral artery of obese Zucker (OZ) rats. We also used an adenovirus construct expressing a dominant negative mutant of the receptor for TNF-alpha (AdTNFRDeltaC) to block the action of endogenous TNF-alpha. Semapimod significantly suppressed neointimal formation and RAGE expression in OZ rats compared with untreated OZ rats. This inhibitory effect of semapimod on neointimal formation was overcome by infection of an adenovirus expressing RAGE into the femoral artery of OZ rats. Furthermore, AdTNFRDeltaC infection significantly suppressed neointimal formation and RAGE expression in the femoral artery of OZ rats.. These results suggest that endogenous cytokines, especially TNF-alpha, were implicated in neointimal formation in OZ rats and that RAGE was a mediator of the effect of these cytokines on neointimal formation. Topics: Adenoviridae; Adipose Tissue; Animals; Arterial Occlusive Diseases; Constriction; Cytokines; Femoral Artery; Gene Expression Regulation; Genetic Vectors; Glycation End Products, Advanced; Hydrazones; Insulin Resistance; Interleukin-1; Interleukin-6; Macrophages; Male; Obesity; Protein Structure, Tertiary; Rats; Rats, Zucker; Receptor for Advanced Glycation End Products; Receptors, Immunologic; Receptors, Tumor Necrosis Factor; Recombinant Fusion Proteins; Tumor Necrosis Factor-alpha; Tunica Intima; Vascular Cell Adhesion Molecule-1 | 2005 |