selinexor and Lung-Neoplasms

selinexor has been researched along with Lung-Neoplasms* in 8 studies

Trials

1 trial(s) available for selinexor and Lung-Neoplasms

ArticleYear
Selinexor in combination with carboplatin and paclitaxel in patients with advanced solid tumors: Results of a single-center, multi-arm phase Ib study.
    Investigational new drugs, 2022, Volume: 40, Issue:2

    Carboplatin and paclitaxel (CT) is one of the standard chemotherapy regimens used in various tumor types. Preclinical models have suggested that selinexor, a first-in-class oral potent selective inhibitor of nuclear export Exportin-1, and CT exerts antitumor activity in multiple malignancies.. This was a single-center, multi-arm phase Ib study utilizing a "basket type" expansion. CT and selinexor was employed as one of the 13 parallel arms. Advanced relapsed/refractory solid tumors following standard therapy or where the addition of selinexor to standard regimens deemed appropriate, were eligible.. Of 13 patients treated, 12 patients were evaluable for response. The most common cancers were breast (n = 4), esophageal (n = 2), ovarian (n = 2) and non-small cell lung cancers (n = 2). All 13 patients had at least one treatment-related adverse events (TRAEs) and the most common were neutropenia (85%), leukopenia (85%), thrombocytopenia (85%), anemia (69%), nausea (54%), vomiting (46%), and fatigue (46%). One patient at 60 mg QW experienced DLT with grade 3 nausea and vomiting lasting 3 days. Unconfirmed partial response (uPR) was observed in 3 patients; one patient each with esophageal, breast, and ovarian cancer. One patient with esophageal adenocarcinoma had confirmed PR, however, was discontinued from the study due to clinical progression. Five patients achieved stable disease (SD). Disease control rate was 8%. Majority of patients (77%), including two patients who had uPR, had prior exposure to carboplatin and/or paclitaxel. Time-to-treatment failure (TTF) ranged from 1 to 153 weeks.. The RP2D of selinexor was 60 mg QW in combination with CT. The combination conferred viable clinical activity with durable objective responses which should further be explored in tumor types for which CT is used as standard of care. Trial information.. gov Identifier: NCT02419495. Sponsor(s): Karyopharm Therapeutics. (Trial registration: NCT02419495. Registered 14 April 2015, https://clinicaltrials.gov/ct2/show/NCT02419495 ).

    Topics: Antineoplastic Combined Chemotherapy Protocols; Carboplatin; Female; Humans; Hydrazines; Lung Neoplasms; Nausea; Neoplasms; Ovarian Neoplasms; Paclitaxel; Thrombocytopenia; Triazoles; Vomiting

2022

Other Studies

7 other study(ies) available for selinexor and Lung-Neoplasms

ArticleYear
Safety, tolerability, and clinical activity of selinexor in combination with pembrolizumab in treatment of metastatic non-small cell lung cancer.
    Cancer, 2023, 09-01, Volume: 129, Issue:17

    In lung cancer, overexpression of nuclear export proteins can result in inactivation of critical tumor suppressor proteins and cell-cycle regulators. Selective suppression of nuclear export proteins has immunomodulatory activities. Here, clinical safety and early efficacy data are presented on the combination of pembrolizumab and an oral selective nuclear export inhibitor, selinexor, for the treatment of metastatic non-small cell lung cancer (mNSCLC).. The primary objective of this prospective investigator-initiated study was to determine the safety and tolerability of selinexor in combination with pembrolizumab in patients with mNSCLC. Secondary objectives included determination of objective tumor response rate, disease control rate, and progression-free survival duration.. A total of 17 patients were included in the final analysis. Fifteen (88%) received more than two lines of prior systemic therapy and 10 (59%) had prior exposure to anti-PD-1/programmed death-ligand 1 (PD-L1) therapy. The median age was 67.5 years. Ten patients had grade ≥3 adverse events related to selinexor treatment. Responses to treatment occurred in patients who did and did not undergo previous anti-PD-1/PD-L1 therapy and in patients with activating driver mutations. The median overall survival and progression-free survival were 11.4 months (95% CI, 3.4-19.8 months) and 3.0 months (95% CI, 1.7-5.7 months), respectively. The overall response rate was 18% and the 6-month disease control rate was 24%.. Selinexor in combination with pembrolizumab demonstrated promising antitumor activity in patients with mNSCLC, including those who had previously received anti-PD-1/PD-L1 therapy. The therapy-related toxic effects were consistent with the prior safety data for both drugs, and no overlapping toxic effects were observed.. ClinicalTrials.gov identifier: NCT02419495.. New strategies to prevent or reverse resistance to immune checkpoint inhibitors are under investigation. Selective inhibitors of nuclear export proteins, such as selinexor, can induce restoration of tumor-suppressing pathways and induce potent immunomodulatory activities. This article contains the clinical safety and early efficacy data on the combination of pembrolizumab and selinexor in treatment of metastatic non-small cell lung cancer.

    Topics: Aged; B7-H1 Antigen; Carcinoma, Non-Small-Cell Lung; Humans; Lung Neoplasms; Prospective Studies

2023
Exportin 1 inhibition prevents neuroendocrine transformation through SOX2 down-regulation in lung and prostate cancers.
    Science translational medicine, 2023, 08-02, Volume: 15, Issue:707

    In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here, we explored the role of exportin 1 in NE transformation. We observed up-regulated exportin 1 in lung and prostate pretransformation adenocarcinomas. Exportin 1 was up-regulated after genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation in different TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the aromatase inhibitor enzalutamide and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs to standard cytotoxics. Together, these data nominate exportin 1 inhibition as a potential therapeutic target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.

    Topics: Adenocarcinoma; Animals; Down-Regulation; Exportin 1 Protein; Humans; Lung Neoplasms; Male; Prostatic Neoplasms; Small Cell Lung Carcinoma; SOXB1 Transcription Factors

2023
Inhibitor of the Nuclear Transport Protein XPO1 Enhances the Anticancer Efficacy of KRAS G12C Inhibitors in Preclinical Models of KRAS G12C-Mutant Cancers.
    Cancer research communications, 2022, Volume: 2, Issue:5

    The identification of molecules that can bind covalently to KRAS G12C and lock it in an inactive GDP-bound conformation has opened the door to targeting KRAS G12C selectively. These agents have shown promise in preclinical tumor models and clinical trials. FDA has recently granted approval to sotorasib for KRAS G12C mutated non-small cell lung cancer (NSCLC). However, patients receiving these agents as monotherapy generally develop drug resistance over time. This necessitates the development of multi-targeted approaches that can potentially sensitize tumors to KRAS inhibitors. We generated KRAS G12C inhibitor-resistant cell lines and observed that they exhibit sensitivity toward selinexor, a selective inhibitor of nuclear export protein exportin1 (XPO1), as a single agent. KRAS G12C inhibitors in combination with selinexor suppressed the proliferation of KRAS G12C mutant cancer cell lines in a synergistic manner. Moreover, combined treatment of selinexor with KRAS G12C inhibitors resulted in enhanced spheroid disintegration, reduction in the number and size of colonies formed by G12C mutant cancer cells. Mechanistically, the combination of selinexor with KRAS G12C inhibitors suppressed cell growth signaling and downregulated the expression of cell cycle markers, KRAS and NF-kB as well as increased nuclear accumulation of tumor suppressor protein Rb. In an. In this study, combining nuclear transport inhibitor selinexor with KRAS G12C inhibitors has resulted in potent antitumor effects in preclinical cancer models. This can be an effective combination therapy for cancer patients that do not respond or develop resistance to KRAS G12C inhibitor treatment.

    Topics: Active Transport, Cell Nucleus; Animals; Carcinoma, Non-Small-Cell Lung; Humans; Karyopherins; Lung Neoplasms; Nuclear Proteins; Proto-Oncogene Proteins p21(ras); Receptors, Cytoplasmic and Nuclear

2022
XPO1 inhibition synergizes with PARP1 inhibition in small cell lung cancer by targeting nuclear transport of FOXO3a.
    Cancer letters, 2021, 04-10, Volume: 503

    Patient mortality rates have remained stubbornly high for the past decades in small cell lung cancer (SCLC) because of having no standard targeted therapies with confirmed advantages at present. Poly [ADP-ribose] polymerase (PARP) inhibitors have shown promise in preclinical models but have had unsatisfactory clinical results in SCLC. By RNA-seq and isobaric tags for relative and absolute quantification (ITRAQ), we revealed that PARP1 inhibition led to the relocalization of forkhead box-O3a (FOXO3a) from nuclear to cytoplasm. By performing co-Immunoprecipitation (co-IP) and CRISPR-Cas9-mediated knockout plasmid we showed that FOXO3a was subject to exportin 1 (XPO1)-dependent nuclear export. We demonstrated the effects of the PARP inhibitor BMN673 on apoptosis and DNA damage were markedly enhanced by simultaneous inhibition of XPO1 in vitro. The combination of BMN673 and the XPO1 inhibitor selinexor inhibited primary SCLC cell proliferation in mini-patient-derived xenotransplants (miniPDXs) and markedly inhibited tumor growth without significant toxicity in xenograft models. The efficacy was enhanced for more than 2.5 times, compared to the single agent. Based on these findings, we further designed a novel dual PARP-XPO1 inhibitor and showed its effectiveness in SCLC. In this work, we illustrated that combining a PARP inhibitor with an XPO1 inhibitor is associated with significantly improved efficacy and tolerability. Dual PARP-XPO1 inhibition restored the FOXO3a balance and activity in SCLC. Collectively, targeting PARP1 and XPO1 opens new avenues for therapeutic intervention against SCLC, warranting further investigation in potential clinical trials.

    Topics: Active Transport, Cell Nucleus; Animals; Cell Line, Tumor; Cell Nucleus; Cell Proliferation; Cell Survival; Cytoplasm; Drug Synergism; Exportin 1 Protein; Female; Forkhead Box Protein O3; Gene Expression Regulation, Neoplastic; Humans; Hydrazines; Karyopherins; Lung Neoplasms; Mice; Phthalazines; Receptors, Cytoplasmic and Nuclear; Small Cell Lung Carcinoma; Triazoles; Xenograft Model Antitumor Assays

2021
XPO1 inhibitor KPT-330 synergizes with Bcl-xL inhibitor to induce cancer cell apoptosis by perturbing rRNA processing and Mcl-1 protein synthesis.
    Cell death & disease, 2019, 05-21, Volume: 10, Issue:6

    XPO1 (exportin1) mediates nuclear export of proteins and RNAs and is frequently overexpressed in cancers. In this study, we show that the orally bioavailable XPO1 inhibitor KPT-330 reduced Mcl-1 protein level, by which it synergized with Bcl-xL inhibitor A-1331852 to induce apoptosis in cancer cells. KPT-330/A-1331852 combination disrupted bindings of Mcl-1 and Bcl-xL to Bax, Bak, and/or Bim, elicited mitochondrial outer membrane permeabilization, and triggered apoptosis. KPT-330 generally mitigated mRNA expression and protein synthesis rather than mRNA nuclear export or protein stability of Mcl-1. KPT-330 inhibited mTORC1/4E-BP1 and Mnk1/eIF4E axes, which disrupted the eIF4F translation initiation complex but was dispensable for Mcl-1 reduction and KPT-330/A-1331852 combination-induced apoptosis. Mature rRNAs are integral components of the ribosome that determines protein synthesis ability. KPT-330 impeded nucleolar rRNA processing and reduced total levels of multiple mature rRNAs. Reconstitution of XPO1 by expressing degradation-resistant C528S mutant retained rRNA amount, Mcl-1 expression, and Bcl-xL inhibitor resistance upon KPT-330 treatment. KPT-330/A-1331852 combination suppressed growth and enhanced apoptosis of non-small cell lung cancer xenografts. Therefore, we clarify the reason of apoptosis resistance of cancer cells to XPO1 inhibition and develop a potential strategy for treating solid tumors.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Benzothiazoles; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Down-Regulation; Drug Synergism; Eukaryotic Initiation Factor-4F; Exportin 1 Protein; Humans; Hydrazines; Isoquinolines; Karyopherins; Lung Neoplasms; Male; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Inbred NOD; Mice, SCID; Myeloid Cell Leukemia Sequence 1 Protein; Receptors, Cytoplasmic and Nuclear; RNA, Ribosomal; Triazoles

2019
Anti-tumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma: the role of survivin.
    Oncotarget, 2015, May-30, Volume: 6, Issue:15

    Survivin, which is highly expressed and promotes cell survival in diffuse malignant peritoneal mesothelioma (DMPM), exclusively relies on exportin 1 (XPO1/CRM1) to be shuttled into the cytoplasm and perform its anti-apoptotic function. Here, we explored the efficacy of Selective Inhibitors of Nuclear Export (SINE), KPT-251, KPT-276 and the orally available, clinical stage KPT-330 (selinexor), in DMPM preclinical models. Exposure to SINE induced dose-dependent inhibition of cell growth, cell cycle arrest at G1-phase and caspase-dependent apoptosis, which were consequent to a decrease of XPO1/CRM1 protein levels and the concomitant nuclear accumulation of its cargo proteins p53 and CDKN1a. Cell exposure to SINE led to a time-dependent reduction of cytoplasmic survivin levels. In addition, after an initial accumulation, the nuclear protein abundance progressively decreased, as a consequence of an enhanced ubiquitination and proteasome-dependent degradation. SINE and the survivin inhibitor YM155 synergistically cooperated in reducing DMPM cell proliferation. Most importantly, orally administered SINE caused a significant anti-tumor effect in subcutaneous and orthotopic DMPM xenografts without appreciable toxicity. Overall, we have demonstrated a marked efficacy of SINE in DMPM preclinical models that may relay on the interference with survivin intracellular distribution and function. Our study suggests SINE-mediated XPO1/CRM1 inhibition as a novel therapeutic option for DMPM.

    Topics: Acrylamides; Active Transport, Cell Nucleus; Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cyclin-Dependent Kinase Inhibitor p21; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Exportin 1 Protein; G1 Phase Cell Cycle Checkpoints; Humans; Hydrazines; Inhibitor of Apoptosis Proteins; Karyopherins; Lung Neoplasms; Mesothelioma; Mesothelioma, Malignant; Mice; Mice, SCID; Neoplasm Proteins; Oxadiazoles; Peritoneal Neoplasms; Real-Time Polymerase Chain Reaction; Receptors, Cytoplasmic and Nuclear; Survivin; Thiazoles; Triazoles; Tumor Suppressor Protein p53

2015
KPT-330 has antitumour activity against non-small cell lung cancer.
    British journal of cancer, 2014, Jul-15, Volume: 111, Issue:2

    We investigated the biologic and pharmacologic activities of a chromosome region maintenance 1 (CRM1) inhibitor against human non-small cell lung cancer (NSCLC) cells both in vitro and in vivo.. The in vitro and in vivo effects of a novel CRM1 inhibitor (KPT-330) for a large number of anticancer parameters were evaluated using a large panel of 11 NSCLC cell lines containing different key driver mutations. Mice bearing human NSCLC xenografts were treated with KPT-330, and tumour growth was assessed.. KPT-330 inhibited proliferation and induced cell cycle arrest and apoptosis-related proteins in 11 NSCLC cells lines. Moreover, the combination of KPT-330 with cisplatin synergistically enhanced the cell kill of the NSCLC cells in vitro. Human NSCLC tumours growing in immunodeficient mice were markedly inhibited by KPT-330. Also, KPT-330 was effective even against NSCLC cells with a transforming mutation of either exon 20 of EGFR, TP53, phosphatase and tensin homologue, RAS or PIK3CA, suggesting the drug might be effective against a variety of lung cancers irrespective of their driver mutation.. Our results support clinical testing of KPT-330 as a novel therapeutic strategy for NSCLC.

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Growth Processes; Cell Line, Tumor; Cisplatin; Exportin 1 Protein; G1 Phase; Genes, p53; Humans; Hydrazines; Karyopherins; Lung Neoplasms; Male; Mice; Mice, Inbred NOD; Mice, SCID; Mutation; Receptors, Cytoplasmic and Nuclear; Triazoles; Xenograft Model Antitumor Assays

2014