selinexor has been researched along with Kidney-Neoplasms* in 2 studies
2 other study(ies) available for selinexor and Kidney-Neoplasms
Article | Year |
---|---|
Validation of a non-oncogene encoded vulnerability to exportin 1 inhibition in pediatric renal tumors.
Malignant rhabdoid tumors (MRTs) and Wilms' tumors (WTs) are rare and aggressive renal tumors of infants and young children comprising ∼5% of all pediatric cancers. MRTs are among the most genomically stable cancers, and although WTs are genomically heterogeneous, both generally lack therapeutically targetable genetic mutations.. Comparative protein activity analysis of MRTs (n = 68) and WTs (n = 132) across TCGA and TARGET cohorts, using metaVIPER, revealed elevated exportin 1 (XPO1) inferred activity. In vitro studies were performed on a panel of MRT and WT cell lines to evaluate effects on proliferation and cell-cycle progression following treatment with the selective XPO1 inhibitor selinexor. In vivo anti-tumor activity was assessed in patient-derived xenograft (PDX) models of MRTs and WTs.. metaVIPER analysis identified markedly aberrant activation of XPO1 in MRTs and WTs compared with other tumor types. All MRT and most WT cell lines demonstrated baseline, aberrant XPO1 activity with in vitro sensitivity to selinexor via cell-cycle arrest and induction of apoptosis. In vivo, XPO1 inhibitors significantly abrogated tumor growth in PDX models, inducing effective disease control with sustained treatment. Corroborating human relevance, we present a case report of a child with multiply relapsed WTs with prolonged disease control on selinexor.. We report on a novel systems-biology-based comparative framework to identify non-genetically encoded vulnerabilities in genomically quiescent pediatric cancers. These results have provided preclinical rationale for investigation of XPO1 inhibitors in an upcoming investigator-initiated clinical trial of selinexor in children with MRTs and WTs and offer opportunities for exploration of inferred XPO1 activity as a potential predictive biomarker for response.. This work was funded by CureSearch for Children's Cancer, Alan B. Slifka Foundation, NIH (U01 CA217858, S10 OD012351, and S10 OD021764), Michael's Miracle Cure, Hyundai Hope on Wheels, Cannonball Kids Cancer, Conquer Cancer the ASCO Foundation, Cycle for Survival, Paulie Strong Foundation, and the Grayson Fund. Topics: Cell Line, Tumor; Child; Child, Preschool; Exportin 1 Protein; Humans; Kidney Neoplasms; Xenograft Model Antitumor Assays | 2022 |
Specific inhibition of the nuclear exporter exportin-1 attenuates kidney cancer growth.
Despite the advent of FDA-approved therapeutics to a limited number of available targets (kinases and mTOR), PFS of kidney cancer (RCC) has been extended only one to two years due to the development of drug resistance. Here, we evaluate a novel therapeutic for RCC which targets the exportin-1 (XPO1) inhibitor.. RCC cells were treated with the orally available XPO1 inhibitor, KPT-330, and cell viability and Annexin V (apoptosis) assays, and cell cycle analyses were performed to evaluate the efficacy of KPT-330 in two RCC cell lines. Immunoblotting and immunofluorescence analysis were performed to validate mechanisms of XPO1 inhibition. The efficacy and on-target effects of KPT-330 were further analyzed in vivo in RCC xenograft mice, and KPT-330-resistant cells were established to evaluate potential mechanisms of KPT-330 resistance.. KPT-330 attenuated RCC viability through growth inhibition and apoptosis induction both in vitro and in vivo, a process in which increased nuclear localization of p21 by XPO1 inhibition played a major role. In addition, KPT-330 resistant cells remained sensitive to the currently approved for RCC multi-kinase inhibitors (sunitinib, sorafenib) and mTOR inhibitors (everolimus, temsirolimus), suggesting that these targeted therapeutics would remain useful as second line therapeutics following KPT-330 treatment.. The orally-available XPO1 inhibitor, KPT-330, represents a novel target for RCC whose in vivo efficacy approaches that of sunitinib. In addition, cells resistant to KPT-330 retain their ability to respond to available RCC therapeutics suggesting a novel approach for treatment in KPT-330-naïve as well as -resistant RCC patients. Topics: Active Transport, Cell Nucleus; Administration, Oral; Animals; Apoptosis; Carcinoma, Renal Cell; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Nucleus; Cell Proliferation; Cell Survival; Cyclin-Dependent Kinase Inhibitor p21; Drug Approval; Drug Resistance, Neoplasm; Epithelial Cells; Exportin 1 Protein; Humans; Hydrazines; Karyopherins; Kidney Neoplasms; Male; Mice, Nude; Receptors, Cytoplasmic and Nuclear; RNA, Small Interfering; Triazoles; United States; United States Food and Drug Administration; Xenograft Model Antitumor Assays | 2014 |