selinexor and Glioblastoma

selinexor has been researched along with Glioblastoma* in 4 studies

Other Studies

4 other study(ies) available for selinexor and Glioblastoma

ArticleYear
Chemoproteomic Profiling of Covalent XPO1 Inhibitors to Assess Target Engagement and Selectivity.
    Chembiochem : a European journal of chemical biology, 2021, 06-15, Volume: 22, Issue:12

    Selinexor, a covalent XPO1 inhibitor, is approved in the USA in combination with dexamethasone for penta-refractory multiple myeloma. Additional XPO1 covalent inhibitors are currently in clinical trials for multiple diseases including hematologic malignancies, solid tumor malignancies, glioblastoma multiforme (GBM), and amyotrophic lateral sclerosis (ALS). It is important to measure the target engagement and selectivity of covalent inhibitors to understand the degree of engagement needed for efficacy, while avoiding both mechanism-based and off-target toxicity. Herein, we report clickable probes based on the XPO1 inhibitors selinexor and eltanexor for the labeling of XPO1 in live cells to assess target engagement and selectivity. We used mass spectrometry-based chemoproteomic workflows to profile the proteome-wide selectivity of selinexor and eltanexor and show that they are highly selective for XPO1. Thermal profiling analysis of selinexor further offers an orthogonal approach to measure XPO1 engagement in live cells. We believe these probes and assays will serve as useful tools to further interrogate the biology of XPO1 and its inhibition in cellular and in vivo systems.

    Topics: Amyotrophic Lateral Sclerosis; Antineoplastic Agents; Cell Line, Tumor; Exportin 1 Protein; Glioblastoma; Humans; Hydrazines; Karyopherins; Receptors, Cytoplasmic and Nuclear; Triazoles

2021
The XPO1 Inhibitor Selinexor Inhibits Translation and Enhances the Radiosensitivity of Glioblastoma Cells Grown
    Molecular cancer therapeutics, 2018, Volume: 17, Issue:8

    Analysis of the radiation-induced translatome of glioblastoma stem-like cells (GSC) identified an interacting network in which XPO1 serves as a major hub protein. To determine whether this nuclear export protein provides a target for radiosensitization, we defined the effects of clinically relevant XPO1 inhibitor selinexor on the radiosensitivity of glioblastoma cells. As determined by clonogenic survival analysis, selinexor enhanced the radiosensitivity of GSCs but not normal fibroblast cell lines. On the basis of γH2AX foci and neutral comet analyses, selinexor inhibited the repair of radiation-induced DNA double-strand breaks in GSCs, suggesting that the selinexor-induced radiosensitization is mediated by an inhibition of DNA repair. Consistent with a role for XPO1 in the nuclear to cytoplasm export of rRNA, selinexor reduced 5S and 18S rRNA nuclear export in GSCs, which was accompanied by a decrease in gene translation efficiency, as determined from polysome profiles, as well as in protein synthesis. In contrast, rRNA nuclear export and protein synthesis were not reduced in normal cells treated with selinexor. Orthotopic xenografts initiated from a GSC line were then used to define the

    Topics: Animals; Brain Neoplasms; Female; Glioblastoma; Humans; Hydrazines; Mice; Mice, Nude; Radiation Tolerance; Triazoles

2018
Dual Inhibition of Bcl-2/Bcl-xL and XPO1 is synthetically lethal in glioblastoma model systems.
    Scientific reports, 2018, 10-18, Volume: 8, Issue:1

    XPO1 has recently emerged as a viable treatment target for solid malignancies, including glioblastoma (GBM), the most common primary malignant brain tumor in adults. However, given that tumors become commonly resistant to single treatments, the identification of combination therapies is critical. Therefore, we tested the hypothesis that inhibition of anti-apoptotic Bcl-2 family members and XPO1 are synthetically lethal. To this purpose, two clinically validated drug compounds, the BH3-mimetic, ABT263, and the XPO1 inhibitor, Selinexor, were used in preclinical GBM model systems. Our results show that inhibition of XPO1 reduces cellular viability in glioblastoma cell cultures. Moreover, addition of ABT263 significantly enhances the efficacy of XPO1 inhibition on the reduction of cellular viability, which occurs in a synergistic manner. While selinexor inhibits the proliferation of glioblastoma cells, the combination treatment of ABT263 and selinexor results in substantial induction of cell death, which is accompanied by activation of effector- initiator caspases and cleavage of PARP. Mechanistically we find that XPO1 inhibition results in down-regulation of anti-apoptotic Mcl-1 and attenuates ABT263 driven Mcl-1 up-regulation. Consistently, siRNA mediated silencing of Mcl-1 sensitizes for ABT263 mediated cell death and partially for the combination treatment. By using a human patient-derived xenograft model of glioblastoma in mice, we demonstrate that the combination treatment of ABT263 and Selinexor reduces tumor growth significantly more than each compound alone. Collectively, these results suggest that inhibition of XPO1 and Bcl-2/Bcl-xL might be a potential strategy for the treatment of malignant glial tumors.

    Topics: Aniline Compounds; Animals; Antineoplastic Agents; Apoptosis; bcl-X Protein; Brain Neoplasms; Cell Proliferation; Drug Therapy, Combination; Exportin 1 Protein; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Hydrazines; Karyopherins; Mice; Mice, Nude; Proto-Oncogene Proteins c-bcl-2; Receptors, Cytoplasmic and Nuclear; Sulfonamides; Triazoles; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2018
Preclinical antitumor efficacy of selective exportin 1 inhibitors in glioblastoma.
    Neuro-oncology, 2015, Volume: 17, Issue:5

    Glioblastoma (GBM) is poorly responsive to current chemotherapy. The nuclear transporter exportin 1 (XPO1, CRM1) is often highly expressed in GBM, which may portend a poor prognosis. Here, we determine the efficacy of novel selective inhibitors of nuclear export (SINE) specific to XPO1 in preclinical models of GBM.. Seven patient-derived GBM lines were treated with 3 SINE compounds (KPT-251, KPT-276, and Selinexor) in neurosphere culture conditions. KPT-276 and Selinexor were also evaluated in a murine orthotopic patient-derived xenograft (PDX) model of GBM. Cell cycle effects were assayed by flow cytometry in vitro and immunohistochemistry in vivo. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase 3/7 activity assays.. Treatment of GBM neurosphere cultures with KPT-276, Selinexor, and KPT-251 revealed dose-responsive growth inhibition in all 7 GBM lines [range of half-maximal inhibitory concentration (IC50), 6-354 nM]. In an orthotopic PDX model, treatment with KPT-276 and Selinexor demonstrated pharmacodynamic efficacy, significantly suppressed tumor growth, and prolonged animal survival. Cellular proliferation was not altered with SINE treatment. Instead, induction of apoptosis was apparent both in vitro and in vivo with SINE treatment, without overt evidence of neurotoxicity.. SINE compounds show preclinical efficacy utilizing in vitro and in vivo models of GBM, with induction of apoptosis as the mechanism of action. Selinexor is now in early clinical trials in solid and hematological malignancies. Based on these preclinical data and excellent brain penetration, we have initiated clinical trials of Selinexor in patients with relapsed GBM.

    Topics: Acrylamides; Active Transport, Cell Nucleus; Animals; Antineoplastic Agents; Apoptosis; Brain Neoplasms; Cell Cycle Checkpoints; Cell Differentiation; Cell Line, Tumor; Dose-Response Relationship, Drug; Exportin 1 Protein; Glioblastoma; Humans; Hydrazines; Karyopherins; Macaca fascicularis; Male; Mice; Oxadiazoles; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Thiazoles; Treatment Outcome; Triazoles; Xenograft Model Antitumor Assays

2015