selexipag and Disease-Models--Animal

selexipag has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for selexipag and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
NTP42, a novel antagonist of the thromboxane receptor, attenuates experimentally induced pulmonary arterial hypertension.
    BMC pulmonary medicine, 2020, Apr-06, Volume: 20, Issue:1

    NTP42 is a novel antagonist of the thromboxane prostanoid receptor (TP), currently in development for the treatment of pulmonary arterial hypertension (PAH). PAH is a devastating disease with multiple pathophysiological hallmarks including excessive pulmonary vasoconstriction, vascular remodelling, inflammation, fibrosis, in situ thrombosis and right ventricular hypertrophy. Signalling through the TP, thromboxane (TX) A. PAH was induced by subcutaneous injection of 60 mg/kg MCT in male Wistar-Kyoto rats. Animals were assigned into groups: 1. 'No MCT'; 2. 'MCT Only'; 3. MCT + NTP42 (0.25 mg/kg BID); 4. MCT + Sildenafil (50 mg/kg BID), and 5. MCT + Selexipag (1 mg/kg BID), where 28-day drug treatment was initiated within 24 h post-MCT.. From haemodynamic assessments, NTP42 reduced the MCT-induced PAH, including mean pulmonary arterial pressure (mPAP) and right systolic ventricular pressure (RSVP), being at least comparable to the standard-of-care drugs Sildenafil or Selexipag in bringing about these effects. Moreover, NTP42 was superior to Sildenafil and Selexipag in significantly reducing pulmonary vascular remodelling, inflammatory mast cell infiltration and fibrosis in MCT-treated animals.. These findings suggest that NTP42 and antagonism of the TP signalling pathway have a relevant role in alleviating the pathophysiology of PAH, representing a novel therapeutic target with marked benefits over existing standard-of-care therapies.

    Topics: Acetamides; Animals; Antihypertensive Agents; Disease Models, Animal; Heart Ventricles; Hemodynamics; Humans; Hypertrophy, Right Ventricular; Male; Monocrotaline; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrazines; Rats; Rats, Inbred WKY; Receptors, Thromboxane; Sildenafil Citrate; Vascular Remodeling

2020
The selective PGI2 receptor agonist selexipag ameliorates Sugen 5416/hypoxia-induced pulmonary arterial hypertension in rats.
    PloS one, 2020, Volume: 15, Issue:10

    Pulmonary arterial hypertension (PAH) is a lethal disease characterized by a progressive increase in pulmonary artery pressure due to an increase in vessel tone and occlusion of vessels. The endogenous vasodilator prostacyclin and its analogs are used as therapeutic agents for PAH. However, their pharmacological effects on occlusive vascular remodeling have not been elucidated yet. Selexipag is a recently approved, orally available and selective prostacyclin receptor agonist with a non-prostanoid structure. In this study, we investigated the pharmacological effects of selexipag on the pathology of chronic severe PAH in Sprague-Dawley and Fischer rat models in which PAH was induced by a combination of injection with the vascular endothelial growth factor receptor antagonist Sugen 5416 and exposure to hypoxia (SuHx). Oral administration of selexipag for three weeks significantly improved right ventricular systolic pressure and right ventricular (RV) hypertrophy in Sprague-Dawley SuHx rats. Selexipag attenuated the proportion of lung vessels with occlusive lesions and the medial wall thickness of lung arteries, corresponding to decreased numbers of Ki-67-positive cells and a reduced expression of collagen type 1 in remodeled vessels. Administration of selexipag to Fischer rats with SuHx-induced PAH reduced RV hypertrophy and mortality caused by RV failure. These effects were probably based on the potent prostacyclin receptor agonistic effect of selexipag on pulmonary vessels. Selexipag has been approved and is used in the clinical treatment of PAH worldwide. It is thought that these beneficial effects of prostacyclin receptor agonists on multiple aspects of PAH pathology contribute to the clinical outcomes in patients with PAH.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acetamides; Animals; Cell Proliferation; Collagen Type I; Disease Models, Animal; Heart Ventricles; Hemodynamics; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Lung; Male; Pulmonary Arterial Hypertension; Pyrazines; Pyrroles; Rats, Sprague-Dawley; Receptors, Epoprostenol; Systole; Vascular Remodeling

2020
Differential effects of Selexipag [corrected] and prostacyclin analogs in rat pulmonary artery.
    The Journal of pharmacology and experimental therapeutics, 2012, Volume: 343, Issue:3

    {4-[(5,6-Diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (ACT-333679) is the main metabolite of the selective prostacyclin (PGI(2)) receptor (IP receptor) agonist selexipag. The goal of this study was to determine the influence of IP receptor selectivity on the vasorelaxant efficacy of ACT-333679 and the PGI(2) analog treprostinil in pulmonary artery under conditions associated with pulmonary arterial hypertension (PAH). Selexipag and ACT-333679 evoked full relaxation of pulmonary artery from control and monocrotaline (MCT)-PAH rats, and ACT-333679 relaxed normal pulmonary artery contracted with either endothelin-1 (ET-1) or phenylephrine. In contrast, treprostinil evoked weaker relaxation than ACT-333679 of control pulmonary artery and failed to induce relaxation of pulmonary artery from MCT-PAH rats. Treprostinil did not evoke relaxation of normal pulmonary artery contracted with either ET-1 or phenylephrine. Expression of prostaglandin E(3) (EP(3)) receptor mRNA was increased in pulmonary artery from MCT-PAH rats. In contraction experiments, the selective EP(3) receptor agonist sulprostone evoked significantly greater contraction of pulmonary artery from MCT-PAH rats compared with control rats. The presence of a threshold concentration of ET-1 significantly augmented the contractile response to sulprostone in normal pulmonary artery. ACT-333679 did not evoke direct contraction of rat pulmonary artery, whereas treprostinil evoked concentration-dependent contraction that was inhibited by the EP(3) receptor antagonist (2E)-3-(3',4'-dichlorobiphenyl-2-yl)-N-(2-thienylsulfonyl)acrylamide. Antagonism of EP(3) receptors also revealed a relaxant response to treprostinil in normal pulmonary artery contracted with ET-1. These data demonstrate that the relaxant efficacy of the selective IP receptor agonist selexipag and its metabolite ACT-333679 is not modified under conditions associated with PAH, whereas relaxation to treprostinil may be limited in the presence of mediators of disease.

    Topics: Acetamides; Acetates; Alprostadil; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Epoprostenol; Hypertension, Pulmonary; In Vitro Techniques; Male; Pulmonary Artery; Pyrazines; Rats; Rats, Wistar; Receptors, Epoprostenol; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents

2012