sea-0400 and Reperfusion-Injury

sea-0400 has been researched along with Reperfusion-Injury* in 7 studies

Reviews

2 review(s) available for sea-0400 and Reperfusion-Injury

ArticleYear
[Na+/Ca2+ exchanger (NCX1) and cardiovascular disease].
    Nihon yakurigaku zasshi. Folia pharmacologica Japonica, 2007, Volume: 129, Issue:4

    Topics: Aniline Compounds; Animals; Calcium Signaling; Cardiovascular Diseases; Humans; Hypertension; Kidney; Myocardial Reperfusion Injury; Phenyl Ethers; Reperfusion Injury; Sodium Chloride, Dietary; Sodium-Calcium Exchanger; Thiourea

2007
Development and application of Na+/Ca2+ exchange inhibitors.
    Molecular and cellular biochemistry, 2004, Volume: 259, Issue:1-2

    The Na+/Ca2+ exchanger (NCX) is an ion transporter that exchanges Na+ and Ca2+ in either Ca2+ efflux or Ca2+ influx mode, depending on the ion gradients across the plasma membrane and the membrane potential. In heart, smooth muscle cells, neurons, and nephron cells, the NCX is thought to play an important role in the regulation of intracellular Ca2+ concentration. Recently, a novel selective inhibitor (KB-R7943 and SEA0400) of the Ca2+ influx mode of the NCX has been developed. NCX inhibitor is expected to be a pharmaceutical agent that offers effective protection against ischemia/reperfusion injury in several organs such as heart and kidney. Here, we summarize pharmacological profiles of KB-R7943 and SEA0400, the molecular mechanism of its action, and its future prospect as a novel pharmaceutical agent.

    Topics: Aniline Compounds; Animals; Binding Sites; Calcium; Humans; Phenyl Ethers; Protein Binding; Reperfusion Injury; Sodium-Calcium Exchanger; Thiourea

2004

Other Studies

5 other study(ies) available for sea-0400 and Reperfusion-Injury

ArticleYear
A Na+/Ca2+ exchanger isoform, NCX1, is involved in retinal cell death after N-methyl-D-aspartate injection and ischemia-reperfusion.
    Journal of neuroscience research, 2009, Volume: 87, Issue:4

    We investigated the expression of Na(+)/Ca(2+) exchanger (NCX) and the functional role of NCX in retinal damage by using NCX1-heterozygous deficient mice (NCX1(+/-)) and SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy] phenoxy]-5-ethoxyaniline), a selective NCX inhibitor in vivo. We also examined the role of NCX in oxygen-glucose deprivation (OGD) stress with a retinal ganglion cell line (RGC-5) cell culture in vitro. The expression of NCX1 was confirmed and entirely localized in retina by immunoblotting and immunohistochemistry, respectively. NCX1(+/-) mice possessed significant protection against retinal damage induced by intravitreal injection of N-methyl-D-aspartate (NMDA). SEA0400 at 3 and 10 mg/kg significantly reduced NMDA- or high intraocular pressure-induced retinal cell damage in mice. Furthermore, SEA0400 reduced the number of TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling)-positive cells and the expression of phosphorylated mitogen-activated protein kinases (ERK1/2, JNK, p38) induced by NMDA injection. In RGC-5, SEA0400 at 0.3 and 1 microM significantly inhibited OGD-induced cell damage. OGD-induced cell damage was aggravated by ouabain (a Na(+),K(+)-ATPase inhibitor) at 100 microM, and this increased damage was significantly reduced by SEA0400 at 1 microM. In conclusion, these results suggest that NCX1 may play a role in retinal cell death induced by NMDA and ischemia-reperfusion.

    Topics: Aniline Compounds; Animals; Cell Death; Cell Line; Enzyme Inhibitors; In Situ Nick-End Labeling; Intraocular Pressure; Ionomycin; Male; Mice; Mice, Transgenic; Mitogen-Activated Protein Kinases; N-Methylaspartate; Neuroprotective Agents; Neurotoxins; Ouabain; Phenyl Ethers; Rats; Reperfusion Injury; Retina; Retinal Ganglion Cells; Retinal Neurons; Sodium-Calcium Exchanger; Stress, Physiological; Thapsigargin

2009
SEA0400, a novel Na+/Ca2+ exchanger inhibitor, reduces calcium overload induced by ischemia and reperfusion in mouse ventricular myocytes.
    Physiological research, 2007, Volume: 56, Issue:1

    Given the potential clinical benefit of inhibiting Na+/Ca2+ exchanger (NCX) activity during myocardial ischemia reperfusion (I/R), pharmacological approaches have been pursued to both inhibit and clarify the importance of this exchanger. SEA0400 was reported to have a potent NCX selectivity. Thus, we examined the effect of SEA0400 on NCX currents and I/R induced intracellular Ca2+ overload in mouse ventricular myocytes using patch clamp techniques and fluorescence measurements. Ischemia significantly inhibited inward and outward NCX current (from -0.04+/-0.01 nA to 0 nA at -100 mV; from 0.23+/-0.08 nA to 0.11+/-0.03 nA at +50 mV, n=7), Subsequent reperfusion not only restored the current rapidly but enhanced the current amplitude obviously, especially the outward currents (from 0.23+/-0.08 nA to 0.49+/-0.12 nA at +50 mV, n=7). [Ca2+]i, expressed as the ratio of Fura-2 fluorescence intensity, increased to 138+/-7% (P<0.01) during ischemia and to 210+/-11% (P<0.01) after reperfusion. The change of NCX current and the increase of [Ca2+]i during I/R can be blocked by SEA0400 in a dose-dependent manner with an EC50 value of 31 nM and 28 nM for the inward and outward NCX current, respectively. The results suggested that SEA0400 is a potent NCX inhibitor, which can protect mouse cardiac myocytes from Ca2+ overload during I/R injuries.

    Topics: Aniline Compounds; Animals; Calcium; Cell Separation; Dose-Response Relationship, Drug; Fluorescent Dyes; Fura-2; Heart Ventricles; In Vitro Techniques; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Patch-Clamp Techniques; Phenyl Ethers; Reperfusion Injury; Sodium-Calcium Exchanger; Ventricular Function

2007
Inhibitory profile of SEA0400 [2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline] assessed on the cardiac Na+-Ca2+ exchanger, NCX1.1.
    The Journal of pharmacology and experimental therapeutics, 2004, Volume: 311, Issue:2

    SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline) has recently been described as a potent and selective inhibitor of Na(+)-Ca(2+) exchange in cardiac, neuronal, and renal preparations. The inhibitory effects of SEA0400 were investigated on the cloned cardiac Na(+)-Ca(2+) exchanger, NCX1.1, expressed in Xenopus laevis oocytes to gain insight into its inhibitory mechanism. Na(+)-Ca(2+) exchange currents were measured using the giant excised patch technique using conditions to evaluate both inward and outward currents. SEA0400 inhibited outward Na(+)-Ca(2+) exchange currents with high affinity (IC(50) = 78 +/- 15 and 23 +/- 4 nM for peak and steady-state currents, respectively). Considerably less inhibitory potency (i.e., micromolar) was observed for inward currents. The inhibitory profile was reexamined after proteolytic treatment of excised patches with alpha-chymotrypsin, a procedure that eliminates ionic regulatory mechanisms. After this treatment, an IC(50) value of 1.2 +/- 0.6 microM was estimated for outward currents, whereas inward currents became almost insensitive to SEA0400. The inhibitory effects of SEA0400 on outward exchange currents were evident at both high and low concentrations of regulatory Ca(2+), although distinct features were noted. SEA0400 accelerated the inactivation rate of outward currents. Based on paired pulse experiments, SEA0400 altered the recovery of exchangers from the Na(+)(i)-dependent inactive state, particularly at higher regulatory Ca(2+)(i) concentrations. Finally, the inhibitory potency of SEA0400 was strongly dependent on the intracellular Na(+) concentration. Our data confirm that SEA0400 is the most potent inhibitor of the cardiac Na(+)-Ca(2+) exchanger described to date and provide a reasonable explanation for its apparent transport mode selectivity.

    Topics: Aniline Compounds; Animals; Mice; Phenyl Ethers; Reperfusion Injury; Sodium-Calcium Exchanger; Transfection; Xenopus laevis

2004
A novel and selective Na+/Ca2+ exchange inhibitor, SEA0400, improves ischemia/reperfusion-induced renal injury.
    European journal of pharmacology, 2003, Oct-08, Volume: 478, Issue:2-3

    We evaluated the effects of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline), a novel and selective Na+/Ca2+ exchange inhibitor, on ischemic acute renal failure. Ischemic acute renal failure in rats was induced by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after the contralateral nephrectomy. SEA0400 administration (0.3, 1 and 3 mg/kg, i.v.) before ischemia dose-dependently attenuated the ischemia/reperfusion-induced renal dysfunction and histological damage such as tubular necrosis. SEA0400 pretreatment at the higher dose suppressed the increment of renal endothelin-1 content after reperfusion. The ischemia/reperfusion-induced renal dysfunction was also overcome by post-ischemia treatment with SEA0400 at 3 mg/kg, i.v. In in vitro study, SEA0400 (0.2 and 1 microM) protected cultured porcine tubular cells (LLC-PK1) from hypoxia/reoxygenation-induced cell injury. These findings support the view that Ca2+ overload via the reverse mode of Na+/Ca2+ exchange, followed by endothelin-1 overproduction, plays an important role in the pathogenesis of ischemia/reperfusion-induced renal injury. The possibility exists that a selective Na+/Ca2+ exchange inhibitor such as SEA0400 is useful as effective therapeutic agent against ischemic acute renal failure in humans.

    Topics: Aniline Compounds; Animals; Blood Urea Nitrogen; Calcium; Dose-Response Relationship, Drug; Endothelin-1; Kidney; Kidney Diseases; Kidney Function Tests; LLC-PK1 Cells; Male; Phenyl Ethers; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Sodium-Calcium Exchanger; Swine; Thiourea

2003
SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models.
    The Journal of pharmacology and experimental therapeutics, 2001, Volume: 298, Issue:1

    The effect of the newly synthesized compound 2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline (SEA0400) on the Na+-Ca2+ exchanger (NCX) was investigated and compared against that of 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea (KB-R7943). In addition, the effects of SEA0400 on reperfusion injury in vitro and in vivo were examined. SEA0400 was extremely more potent than KB-R7943 in inhibiting Na+-dependent Ca2+ uptake in cultured neurons, astrocytes, and microglia: IC50s of SEA0400 and KB-R7943 were 5 to 33 nM and 2 to 4 microM, respectively. SEA0400 at the concentration range that inhibited NCX exhibited negligible affinities for the Ca2+ channels, Na+ channels, K+ channels, norepinephrine transporter, and 14 receptors, and did not affect the activities of the Na+/H+ exchanger, Na+,K+-ATPase, Ca2+-ATPase, and five enzymes. SEA0400, unlike KB-R7943, did not inhibit the store-operated Ca2+ entry in cultured astrocytes. SEA0400 attenuated dose- dependently paradoxical Ca2+ challenge-induced production of reactive oxygen species, DNA ladder formation, and nuclear condensation in cultured astrocytes, whereas it did not affect thapsigargin-induced cell injury. Furthermore, administration of SEA0400 reduced infarct volumes after a transient middle cerebral artery occlusion in rat cerebral cortex and striatum. These results indicate that SEA0400 is the most potent and selective inhibitor of NCX, and suggest that the compound may exert protective effects on postischemic brain damage.

    Topics: Aniline Compounds; Animals; Animals, Newborn; Astrocytes; Brain Ischemia; Calcium Signaling; Cerebral Cortex; Corpus Striatum; Ion Channels; Ion Transport; Phenyl Ethers; Rats; Rats, Wistar; Reperfusion Injury; Sodium-Calcium Exchanger; Thiourea

2001