sch-442416 has been researched along with Disease-Models--Animal* in 5 studies
5 other study(ies) available for sch-442416 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
A
The aim of this study was to research the effects of glutamine synthetase (GS) and glutamate aspartate transporter (GLAST) in rat Müller cells and the effects of an adenosine A. This study used RT-PCR and Western blotting to quantify the expressions of GS and GLAST under different hypoxic conditions as well as the expressions of GS and GLAST at different drug concentrations. A cell viability assay was used to assess drug toxicity.. mRNA and protein expression of GS and GLAST in hypoxia Group 24 h was significantly increased. mRNA and protein expressions of GS and GLAST both increased in Group 1 . Hypoxia activates GS and GLAST in rat retinal Müller cells in a short time Topics: Adenosine A2 Receptor Antagonists; Amino Acid Transport System X-AG; Animals; Cell Survival; Disease Models, Animal; Ependymoglial Cells; Glutamate-Ammonia Ligase; Hypoxia; Pyrazoles; Pyrimidines; Rats, Sprague-Dawley; Up-Regulation | 2020 |
Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine.
Sudden unexpected death in epilepsy (SUDEP) is rare but is an important public health burden due to the number of patient years lost. Respiratory dysfunction following generalized convulsive seizure is a common sequence of events in witnessed SUDEP cases. The DBA/2 mouse model of SUDEP exhibits generalized convulsive audiogenic seizures (AGSz), which result in seizure-induced respiratory arrest (S-IRA) in ∼75% of these animals, while the remaining DBA/2 mice exhibit AGSz without S-IRA. SUDEP induction may involve actions of adenosine, which is released during generalized seizures in animals and patients and is known to depress respiration. This study examined the effects of systemic administration of agents that alter the actions of adenosine on the incidence of S-IRA in DBA/2 mice. DBA/2 mice that consistently exhibited AGSz without S-IRA showed a significantly increased incidence of S-IRA following treatment with 5-iodotubercidin, which blocks adenosine metabolism. Treatment of DBA/2 mice that consistently exhibited AGSz followed by S-IRA with a non-selective adenosine antagonist, caffeine, or an A2A adenosine receptor subtype-selective antagonist (SCH 442416) significantly reduced S-IRA incidence. By contrast, an A1 adenosine receptor antagonist (DPCPX) was not effective in reducing S-IRA incidence. These findings suggest that preventative approaches for SUDEP should consider agents that reduce the actions of adenosine. Topics: Adenosine; Animals; Caffeine; Death, Sudden; Disease Models, Animal; Disease Susceptibility; Dose-Response Relationship, Drug; Female; Male; Mice, Inbred DBA; Purinergic P1 Receptor Antagonists; Pyrazoles; Pyrimidines; Receptors, Purinergic P1; Respiration; Respiration Disorders; Seizures; Tubercidin; Xanthines | 2016 |
Functional changes in postsynaptic adenosine A(2A) receptors during early stages of a rat model of Huntington disease.
Huntington disease (HD) is a neurodegenerative disorder involving preferential loss of striatal GABAergic medium spiny neurons. Adenosine A(2A) receptors (A(2A)Rs) are present in the striatum at both presynaptic and post-synaptic levels. Blocking pre-synaptic A(2A)Rs, localized in glutamatergic terminals that contact striatal GABAergic dynorphinergic neurons, reduces glutamate release, which could be beneficial in HD. On the other hand, blockade of post-synaptic A(2A)Rs, localized in striatal GABAergic enkephalinergic neurons, could exacerbate the motor dysfunction. To evaluate the function of pre- or post-synaptic A(2A)Rs in HD we used selective antagonists for these receptors in a transgenic rat model of HD. Locomotor activity after systemic administration of the postsynaptic A(2A)R antagonist KW-6002 was used to investigate the function of post-synaptic A(2A)Rs. The role of pre-synaptic A(2A)Rs was instead evaluated by measuring the reduction of the electromyographic response of mastication muscles during electrical stimulation of the orofacial motor cortex after the systemic administration of the presynaptic A(2A)R antagonist SCH-442416. The ability of KW-6002 to produce locomotor activation was lost at 6 and 12 month-old of age in heterozygous and homozygous transgenic rats, but not in wild-type littermates. Nevertheless, no significant changes were observed up to 12 months of age in the potency of SCH-442416 to decrease the electromyographic response after cortical electrical stimulation. These results agree with a selective impairment of the striatal GABAergic enkephalinergic neuronal function during pre-symptomatic stages in HD. Since presynaptic A(2A)R function is not impaired, this receptor could probably be used as a target for the symptomatic treatment of the disease. Topics: Adenosine A2 Receptor Antagonists; Animals; Corpus Striatum; Disease Models, Animal; Electric Stimulation; Electromyography; GABAergic Neurons; Huntington Disease; Masticatory Muscles; Motor Activity; Purines; Pyrazoles; Pyrimidines; Rats; Rats, Transgenic; Receptor, Adenosine A2A; Receptors, Presynaptic; Synaptic Transmission; Treatment Outcome | 2011 |
Protective roles of adenosine A1, A2A, and A3 receptors in skeletal muscle ischemia and reperfusion injury.
Although adenosine exerts cardio-and vasculoprotective effects, the roles and signaling mechanisms of different adenosine receptors in mediating skeletal muscle protection are not well understood. We used a mouse hindlimb ischemia-reperfusion model to delineate the function of three adenosine receptor subtypes. Adenosine A(3) receptor-selective agonist 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (Cl-IBMECA; 0.07 mg/kg ip) reduced skeletal muscle injury with a significant decrease in both Evans blue dye staining (5.4 +/- 2.6%, n = 8 mice vs. vehicle-treated 28 +/- 6%, n = 7 mice, P < 0.05) and serum creatine kinase level (1,840 +/- 910 U/l, n = 13 vs. vehicle-treated 12,600 +/- 3,300 U/l, n = 14, P < 0.05), an effect that was selectively blocked by an A(3) receptor antagonist 3-ethyl-5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS-1191; 0.05 mg/kg). The adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 0.05 mg/kg) also exerted a cytoprotective effect, which was selectively blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.2 mg/kg). The adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.07 mg/kg)-induced decrease in skeletal muscle injury was selectively blocked by the A(2A) antagonist 2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e] [1,2,4]triazolo[1,5-C]pyrimidin-5-amine (SCH-442416; 0.017 mg/kg). The protection induced by the A(3) receptor was abrogated in phospholipase C-beta2/beta3 null mice, but the protection mediated by the A(1) or A(2A) receptor remained unaffected in these animals. The adenosine A(3) receptor is a novel cytoprotective receptor that signals selectively via phospholipase C-beta and represents a new target for ameliorating skeletal muscle injury. Topics: Adenosine; Animals; Dihydropyridines; Disease Models, Animal; Hindlimb; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Skeletal; Phenethylamines; Phospholipase C beta; Pyrazoles; Pyrimidines; Receptor, Adenosine A1; Receptor, Adenosine A2A; Receptor, Adenosine A3; Reperfusion Injury; Signal Transduction; Xanthines | 2007 |