sch-23390 and Neuralgia

sch-23390 has been researched along with Neuralgia* in 2 studies

Other Studies

2 other study(ies) available for sch-23390 and Neuralgia

ArticleYear
Levo-tetrahydropalmatine attenuates oxaliplatin-induced mechanical hyperalgesia in mice.
    Scientific reports, 2014, Jan-28, Volume: 4

    Common chemotherapeutic agents such as oxaliplatin often cause neuropathic pain during cancer treatment in patients. Such neuropathic pain is difficult to treat and responds poorly to common analgesics, which represents a challenging clinical issue. Corydalis yanhusuo is an old traditional Chinese medicine with demonstrated analgesic efficacy in humans. However, the potential analgesic effect of its active component, levo-tetrahydropalmatine (l-THP), has not been reported in conditions of neuropathic pain. This study found that l-THP (1-4 mg/kg, i.p.) produced a dose-dependent anti-hyperalgesic effect in a mouse model of chemotherapeutic agent oxaliplatin-induced neuropathic pain. In addition, we found that the anti-hyperalgesic effect of l-THP was significantly blocked by a dopamine D1 receptor antagonist SCH23390 (0.02 mg/kg), suggesting a dopamine D1 receptor mechanism. In contrast, l-THP did not significantly alter the general locomotor activity in mice at the dose that produced significant anti-hyperalgesic action. In summary, this study reported that l-THP possesses robust analgesic efficacy in mice with neuropathic pain and may be a useful analgesic in the management of neuropathic pain.

    Topics: Analgesics; Animals; Benzazepines; Berberine Alkaloids; Corydalis; Disease Models, Animal; Hyperalgesia; Male; Mice; Mice, Inbred C57BL; Neuralgia; Organoplatinum Compounds; Oxaliplatin; Phytotherapy; Plant Preparations; Receptors, Dopamine D1

2014
Discovery of {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H-benzimidazol-1-yl)piperidin-1-yl]cyclooctyl}methanol, systemically potent novel non-peptide agonist of nociceptin/orphanin FQ receptor as analgesic for the treatment of neuropathic pain: de
    Bioorganic & medicinal chemistry, 2010, Nov-01, Volume: 18, Issue:21

    Neuropathic pain is a serious chronic disorder caused by lesion or dysfunction in the nervous systems. Endogenous nociceptin/orphanin FQ (N/OFQ) peptide and N/OFQ peptide (NOP) receptor [or opioid-receptor-like-1 (ORL1) receptor] are located in the central and peripheral nervous systems, the immune systems, and peripheral organs, and have a crucial role in the pain sensory system. Indeed, peripheral or intrathecal N/OFQ has displayed antinociceptive activities in neuropathic pain models, and inhibitory effects on pain-related neurotransmitter releases and on synaptic transmissions of C- and Aδ-fibers. In this study, design, synthesis, and structure-activity relationships of peripheral/spinal cord-targeting non-peptide NOP receptor agonist were investigated for the treatment of neuropathic pain, which resulted in the discovery of highly selective and potent novel NOP receptor full agonist {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H-benzimidazol-1-yl)piperidin-1-yl]cyclooctyl}methanol 1 (HPCOM) as systemically (subcutaneously) potent new-class analgesic. Thus, 1 demonstrates dose-dependent inhibitory effect against mechanical allodynia in chronic constriction injury-induced neuropathic pain model rats, robust metabolic stability and little hERG potassium ion channel binding affinity, with its unique and potentially safe profiles and mechanisms, which were distinctive from those of N/OFQ in terms of site-differential effects.

    Topics: Analgesics; Animals; Benzimidazoles; Drug Design; Drug Evaluation, Preclinical; Humans; Microsomes, Liver; Neuralgia; Nociceptin Receptor; Pyrroles; Rats; Receptors, Opioid; Structure-Activity Relationship

2010