sch-23390 has been researched along with Myopia* in 3 studies
3 other study(ies) available for sch-23390 and Myopia
Article | Year |
---|---|
Levodopa inhibits the development of lens-induced myopia in chicks.
Animal models have demonstrated a link between dysregulation of the retinal dopamine system and the development of myopia (short-sightedness). We have previously demonstrated that topical application of levodopa in chicks can inhibit the development of form-deprivation myopia (FDM) in a dose-dependent manner. Here, we examine whether this same protection is observed in lens-induced myopia (LIM), and whether levodopa's protection against FDM and LIM occurs through a dopamine D1- or D2-like receptor mechanism. To do this, levodopa was first administered daily as an intravitreal injection or topical eye drop, at one of four ascending doses, to chicks developing LIM. Levodopa's mechanism of action was then examined by co-administration of levodopa injections with D1-like (SCH-23390) or D2-like (spiperone) dopamine antagonists in chicks developing FDM or LIM. For both experiments, levodopa's effectiveness was examined by measuring axial length and refraction after 4 days of treatment. Levodopa inhibited the development of LIM in a dose-dependent manner similar to its inhibition of FDM when administered via intravitreal injections or topical eye drops. In both FDM and LIM, levodopa injections remained protective against myopia when co-administered with SCH-23390, but not spiperone, indicating that levodopa elicits its protection through a dopamine D2-like receptor mechanism in both paradigms. Topics: Animals; Benzazepines; Chickens; Disease Models, Animal; Dose-Response Relationship, Drug; Intravitreal Injections; Lenses; Levodopa; Male; Myopia; Ophthalmic Solutions; Receptors, Dopamine D2; Spiperone | 2020 |
Effects of dopaminergic agents on progression of naturally occurring myopia in albino guinea pigs (Cavia porcellus).
Disruption of dopaminergic signaling has been implicated in the abnormalities of ocular development in albinism, and many experiments have shown that retinal dopamine is a major regulator of postnatal eye growth and myopia in animal models. Therefore, in the present study we investigated whether progressive myopia, which can occur in albino guinea pigs without experimental manipulation of visual conditions, is affected by dopaminergic agents.. Two-week-old albino guinea pigs, selected for being myopic (range refractive error [RE], -2 to -10 diopters [D]), received unilateral peribulbar injections of apomorphine (nonselective dopamine receptor agonist; 0, 7.5, 25, 75, 250, 750, and 2500 ng; n = 112), SKF38393 (D1-like agonist; 0, 10, 100, 1000 ng; n = 63), SCH23390 (D1-like antagonist; 0, 2500 ng; n = 27), quinpirole (D2-like agonist; 0, 10, 100, 1000 ng; n = 58), or sulpiride (D2-like antagonist; 0, 2500 ng; n = 24) once a day for four weeks. One noninjected group (n = 19) served as untreated control. Refractive states and axial dimensions of the eyes were measured without cycloplegia or general anesthetic, using eccentric infrared photoretinoscopy and A-scan ultrasonography, respectively, before treatment, and after 2 and 4 weeks of treatment. The main drug effects were analyzed by paired t-test or 2-way repeated measures ANOVA, as required.. The naturally occurring progression of myopic RE was inhibited by apomorphine at relatively high doses (250 and 750 ng), SKF38393 at 100 ng (D1-like agonist), and sulpiride at 2500 ng (D2-like antagonist), but promoted by apomorphine at a lower dose (25 ng), quinpirole at 100 ng (D2-like agonist), and SCH23390 at 2500 ng (D1-like antagonist). All drugs affected primarily vitreous chamber depth, rather than anterior segment dimensions.. Our data suggest that the activation of D1-like receptors inhibits, whereas activation of D2-like receptors promotes, progressive myopia in this animal model. The robust effects of antagonists suggest that ocular dopamine receptors in these albinos may be in a chronic state of partial excitation. The precise location and identity of the receptors responsible for these effects remain to be determined. Topics: Animals; Apomorphine; Benzazepines; Disease Models, Animal; Disease Progression; Dopamine Agonists; Dopamine Antagonists; Follow-Up Studies; Guinea Pigs; Myopia; Refraction, Ocular; Sulpiride; Treatment Outcome | 2014 |
Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia.
In eyes wearing negative lenses, the D2 dopamine antagonist spiperone was only partly effective in preventing the ameliorative effects of brief periods of vision (Nickla et al., 2010), in contrast to reports from studies using form-deprivation. The present study was done to directly compare the effects of spiperone, and the D1 antagonist SCH-23390, on the two different myopiagenic paradigms. 12-day old chickens wore monocular diffusers (form-deprivation) or -10 D lenses attached to the feathers with matching rings of Velcro. Each day for 4 days, 10 μl intravitreal injections of the dopamine D2/D4 antagonist spiperone (5 nmoles) or the D1 antagonist SCH-23390, were given under isoflurane anesthesia, and the diffusers (n = 16; n = 5, respectively) or lenses (n = 20; n = 6) were removed for 2 h immediately after. Saline injections prior to vision were done as controls (form-deprivation: n = 11; lenses: n = 10). Two other saline-injected groups wore the lenses (n = 12) or diffusers (n = 4) continuously. Axial dimensions were measured by high frequency A-scan ultrasonography at the start, and on the last day immediately prior to, and 3 h after the injection. Refractive errors were measured at the end of the experiment using a Hartinger's refractometer. In form-deprived eyes, spiperone, but not SCH-23390, prevented the ocular growth inhibition normally effected by the brief periods of vision (change in vitreous chamber depth, spiperone vs saline: 322 vs 211 μm; p = 0.01). By contrast, neither had any effect on negative lens-wearing eyes given similar unrestricted vision (210 and 234 μm respectively, vs 264 μm). The increased elongation in the spiperone-injected form-deprived eyes did not, however, result in a myopic shift, probably due to the inhibitory effect of the drug on anterior chamber growth (drug vs saline: 96 vs 160 μm; p < 0.01). Finally, spiperone inhibited the vision-induced transient choroidal thickening in form-deprived eyes, while SCH-23390 did not. These results indicate that the dopaminergic mechanisms mediating the protective effects of brief periods of unrestricted vision differ for form-deprivation versus negative lens-wear, which may imply different growth control mechanisms between the two. Topics: Animals; Animals, Newborn; Axial Length, Eye; Benzazepines; Chickens; Choroid; Contact Lenses; Dopamine Antagonists; Dopamine D2 Receptor Antagonists; Eye; Intravitreal Injections; Light; Myopia; Receptors, Dopamine D1; Receptors, Dopamine D4; Sensory Deprivation; Spiperone; Ultrasonography | 2011 |