sch-23390 has been researched along with Mucopolysaccharidosis-III* in 1 studies
1 other study(ies) available for sch-23390 and Mucopolysaccharidosis-III
Article | Year |
---|---|
Altered heparan sulfate metabolism during development triggers dopamine-dependent autistic-behaviours in models of lysosomal storage disorders.
Lysosomal storage disorders characterized by altered metabolism of heparan sulfate, including Mucopolysaccharidosis (MPS) III and MPS-II, exhibit lysosomal dysfunctions leading to neurodegeneration and dementia in children. In lysosomal storage disorders, dementia is preceded by severe and therapy-resistant autistic-like symptoms of unknown cause. Using mouse and cellular models of MPS-IIIA, we discovered that autistic-like behaviours are due to increased proliferation of mesencephalic dopamine neurons originating during embryogenesis, which is not due to lysosomal dysfunction, but to altered HS function. Hyperdopaminergia and autistic-like behaviours are corrected by the dopamine D1-like receptor antagonist SCH-23390, providing a potential alternative strategy to the D2-like antagonist haloperidol that has only minimal therapeutic effects in MPS-IIIA. These findings identify embryonic dopaminergic neurodevelopmental defects due to altered function of HS leading to autistic-like behaviours in MPS-II and MPS-IIIA and support evidence showing that altered HS-related gene function is causative of autism. Topics: Animals; Autism Spectrum Disorder; Benzazepines; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Dopamine; Dopamine Antagonists; Dopaminergic Neurons; Heparitin Sulfate; Lysosomal Storage Diseases; Mesencephalon; Mice; Mucopolysaccharidosis III; Receptors, Dopamine D1 | 2021 |