scalaradial and Infarction--Middle-Cerebral-Artery

scalaradial has been researched along with Infarction--Middle-Cerebral-Artery* in 2 studies

Other Studies

2 other study(ies) available for scalaradial and Infarction--Middle-Cerebral-Artery

ArticleYear
The Discovery of Novel ACA Derivatives as Specific TRPM2 Inhibitors that Reduce Ischemic Injury Both In Vitro and In Vivo.
    Journal of medicinal chemistry, 2021, 04-08, Volume: 64, Issue:7

    The transient receptor potential melastatin 2 (TRPM2) channel is associated with ischemia/reperfusion injury, inflammation, cancer, and neurodegenerative diseases. However, the limit of specific inhibitors impedes the development of TRPM2-targeted therapeutic agents. To discover more potent and selective TRPM2 inhibitors, 59

    Topics: Animals; Cell Line, Tumor; Cinnamates; Glucose; HEK293 Cells; Humans; Infarction, Middle Cerebral Artery; Male; Mice, Inbred C57BL; Molecular Structure; Neuroprotective Agents; ortho-Aminobenzoates; Oxygen; Reperfusion Injury; Structure-Activity Relationship; TRPM Cation Channels

2021
Chronic intracerebroventricular delivery of the secretory phospholipase A2 inhibitor, 12-epi-scalaradial, does not improve outcome after focal cerebral ischemia-reperfusion in rats.
    Experimental brain research, 2007, Volume: 176, Issue:2

    Phospholipase A2s (PLA2s) seem to be involved in the pathophysiology of ischemic brain injury, but their specific role is far from being completely understood. The present study was carried out to ascertain how and to what extent secretory PLA2s (sPLA2s) activity influences outcome after cerebral ischemia-reperfusion, and to correlate this with the inflammatory response. To do this we used the potent and selective sPLA2 inhibitor, 12-epi-scalaradial. Male Wistar rats were separated into three groups: a control group receiving intracerebroventricular vehicle, and two groups receiving intracerebroventricular 0.005 or 0.5 microg/h 12-epi-scalaradial. Every animal was subjected to middle cerebral artery (MCA) occlusion (90 min, intraluminal thread technique) under continuous moni-torization of cerebrocortical perfusion (CP, laser-Doppler flowmetry), followed by reperfusion (3 days). Neurological status, infarct volume, and myeloperoxidase (MPO) activity were the main end points. Three days after the 90-min ischemia period, neurological examination did not reveal significant differences between the three groups of rats. Control rats showed a mean infarct volume of 145.9 +/- 24.7 mm3 (21 +/- 4.1% of the ipsilateral hemisphere volume), while mean infarct volume in rats treated with 0.005 or 0.5 microg/h 12-epi-scalaradial increased to 164.8 +/- 86.8 mm3 (22.0 +/- 10.9%) and 211.5 +/- 12.2 mm3 (28 +/- 3%, P < 0.05), respectively. Treatment with the highest dose of 12-epi-scalaradial (0.5 microg/h) increased MPO activity in the ipsilateral hemisphere by about 140% (from 0.59 +/- 0.59 to 1.42 +/- 1.03 units of activity/g of tissue in comparison with the control ischemic hemisphere, P < 0.05). Overall, our results point to a positive rather than a negative influence of sPLA2 activity during ischemia. This, along with its inability to decrease the inflammatory response, does not allow to propose the use of 12-epi-scalardial as a potential drug for stroke therapy.

    Topics: Animals; Cerebral Infarction; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Administration Schedule; Homosteroids; Infarction, Middle Cerebral Artery; Laser-Doppler Flowmetry; Male; Neurologic Examination; Neuroprotective Agents; Peroxidase; Phospholipases A2; Rats; Rats, Wistar; Reperfusion Injury; Sesterterpenes; Time Factors

2007