sc-57461 and Inflammation

sc-57461 has been researched along with Inflammation* in 2 studies

Other Studies

2 other study(ies) available for sc-57461 and Inflammation

ArticleYear
Inhibition of leukotriene B4 synthesis protects against early brain injury possibly via reducing the neutrophil-generated inflammatory response and oxidative stress after subarachnoid hemorrhage in rats.
    Behavioural brain research, 2018, Feb-26, Volume: 339

    Leukotriene B4 (LTB4) is a highly potent neutrophil chemoattractant and neutrophils induces inflammatory response and oxidative stress when they recruit to and infiltrate in the injuried/inflamed site, such as the brain parenchyma after aneurysmal subarachnoid hemorrhage (SAH). This study is to investigate the potential effects of inhibition of LTB4 synthesis on neutrophil recruitment, inflammatory response and oxidative stress, as well as early brain injury (EBI) in rats after SAH. A pre-chiasmatic cistern SAH model of rats was used in this experiment. SC 57461A was used to inhibit LTB4 synthesis via intracerebroventricular injection. The brain tissues of temporal lobe after SAH were analyzed. Neuronal injury, brain edema and neurological function were evaluated to investigate the development of EBI. We found that inhibition of LTB4 synthesis after SAH could reduce the level of myeloperoxidase, alleviate the inflammatory response and oxidative stress, and reduce neuronal death in the brain parenchyma, and ameliorate brain edema and neurological behavior impairment at 24h after SAH. These results suggest that inhibition of LTB4 synthesis might alleviate EBI after SAH possibly via reducing the neutrophil-generated inflammatory response and oxidative stress.

    Topics: Animals; beta-Alanine; Blood-Brain Barrier; Brain Edema; Brain Injuries; Disease Models, Animal; Inflammation; Leukotriene B4; Male; Neutrophils; Oxidative Stress; Rats, Sprague-Dawley; Subarachnoid Hemorrhage

2018
The development of novel LTA
    Scientific reports, 2017, 03-17, Volume: 7

    The pro-inflammatory mediator leukotriene B

    Topics: Amino Acid Motifs; Animals; Anti-Inflammatory Agents; beta-Alanine; Binding Sites; Bone Marrow Cells; Crystallography, X-Ray; Enzyme Inhibitors; Epoxide Hydrolases; Female; Gene Expression; Humans; Hydrolysis; Inflammation; Leukotriene B4; Mice; Mice, Inbred BALB C; Molecular Docking Simulation; Neutrophils; Oligopeptides; Proline; Protein Binding; Protein Interaction Domains and Motifs; Protein Structure, Secondary; Recombinant Proteins; Substrate Specificity

2017