sc-57461 has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for sc-57461 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Inhibition of leukotriene B4 synthesis protects against early brain injury possibly via reducing the neutrophil-generated inflammatory response and oxidative stress after subarachnoid hemorrhage in rats.
Leukotriene B4 (LTB4) is a highly potent neutrophil chemoattractant and neutrophils induces inflammatory response and oxidative stress when they recruit to and infiltrate in the injuried/inflamed site, such as the brain parenchyma after aneurysmal subarachnoid hemorrhage (SAH). This study is to investigate the potential effects of inhibition of LTB4 synthesis on neutrophil recruitment, inflammatory response and oxidative stress, as well as early brain injury (EBI) in rats after SAH. A pre-chiasmatic cistern SAH model of rats was used in this experiment. SC 57461A was used to inhibit LTB4 synthesis via intracerebroventricular injection. The brain tissues of temporal lobe after SAH were analyzed. Neuronal injury, brain edema and neurological function were evaluated to investigate the development of EBI. We found that inhibition of LTB4 synthesis after SAH could reduce the level of myeloperoxidase, alleviate the inflammatory response and oxidative stress, and reduce neuronal death in the brain parenchyma, and ameliorate brain edema and neurological behavior impairment at 24h after SAH. These results suggest that inhibition of LTB4 synthesis might alleviate EBI after SAH possibly via reducing the neutrophil-generated inflammatory response and oxidative stress. Topics: Animals; beta-Alanine; Blood-Brain Barrier; Brain Edema; Brain Injuries; Disease Models, Animal; Inflammation; Leukotriene B4; Male; Neutrophils; Oxidative Stress; Rats, Sprague-Dawley; Subarachnoid Hemorrhage | 2018 |