sb-611812 and Disease-Models--Animal

sb-611812 has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for sb-611812 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Targeted overexpression of the human urotensin receptor transgene in smooth muscle cells: effect of UT antagonism in ApoE knockout mice fed with Western diet.
    Atherosclerosis, 2009, Volume: 204, Issue:2

    Urotensin II (UII) and its receptor UT are upregulated in the pathological setting of various cardiovascular diseases including atherosclerosis. However, their exact role in atherosclerosis remains to be determined. In the present study we used four strains of mice; wild-type (WT), UT(+) (a transgenic strain expressing human UT driven by the alpha-smooth muscle-specific, SM22, promoter), ApoE knockout (ko), and UT(+)/ApoE ko. All animals were fed high fat diet for 12 weeks. Western blot analysis revealed a significant increase in aortic UT expression in UT(+) relative to WT mice (P<0.05). Aortas of ApoE ko mice expressed comparable UT protein level to that of UT(+). Immunohistochemistry revealed the presence of strong expression of UT and UII proteins in the atheroma of UT(+), ApoE ko and UT(+)/ApoE ko mice, particularly in foam cells. Serum cholesterol and triglyceride levels were significantly increased in ApoE ko and in UT(+)/ApoE ko but not in UT(+) mice when compared to WT mice (P<0.0001). Analysis of aortas showed a significant increase in atherosclerotic lesion in the UT(+), ApoE ko and UT(+)/ApoE ko compared to WT mice (P<0.05). Oral administration of the UT receptor antagonist SB-657510A (30 microg/Kg/day gavage) for 10 weeks in a group of ApoE ko mice fed on high fat diet resulted in a significant reduction of lesion (P<0.001). SB-657510A also significantly reduced ACAT-1 protein expression in the atherosclerotic lesion of ApoE ko mice (P<0.05). The present findings demonstrate an important role for UT in the pathogenesis of atherosclerosis. The use of UT receptor antagonists may provide a beneficial tool in the management of this debilitating disease process.

    Topics: Acetyl-CoA C-Acetyltransferase; Animals; Aorta; Aortic Diseases; Apolipoproteins E; Atherosclerosis; Blotting, Western; Cardiovascular Agents; Cholesterol, Dietary; Disease Models, Animal; Foam Cells; Humans; Immunohistochemistry; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Microfilament Proteins; Muscle Proteins; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Promoter Regions, Genetic; Receptors, G-Protein-Coupled; Sulfonamides; Triglycerides; Urotensins

2009
Urotensin-II blockade with SB-611812 attenuates cardiac dysfunction in a rat model of coronary artery ligation.
    Journal of molecular and cellular cardiology, 2006, Volume: 41, Issue:2

    Expression of urotensin II (UII) is significantly elevated in the hearts of patients with congestive heart failure (CHF). Recent reports have also shown increased plasma levels of UII in patients with CHF, and these levels correlated with the severity of disease. We therefore hypothesized that blockade of UII signaling would improve cardiac function in a rat model of CHF. CHF was induced in rats by ligating the left coronary artery. Animals were randomized to either treatment with a specific UT receptor antagonist, SB-611812 (30 mg/kg/day, UID by gavage), or vehicle, starting either 30 min prior to coronary ligation (early treatment) or 10 days after ligation (delayed treatment). Treatment drug or vehicle was administered daily thereafter for 8 weeks. We measured cardiac function and evaluated the levels of mRNA expression for mediators of CHF. In addition, we evaluated UII and UT protein levels using immunohistochemistry and Western blotting. Cardiomyocyte hypertrophy was evaluated by measuring cardiomyocyte cross-sectional area. Animals with CHF showed increased UII and UT expression as evidenced by immunohistochemistry and Western blotting. Treatment with the SB-611812 significantly reduced overall mortality, left ventricular end-diastolic pressure by 72%, lung edema by 71%, right ventricular systolic pressure by 92%, central venous pressure by 59%, cardiomyocyte hypertrophy by 54%, and ventricular dilatation by 79% (P < 0.05). Therefore, blockade of the UT receptor reduced mortality and improved cardiac function in this model of myocardial infarction and CHF, suggesting an important role for UII in the pathogenesis of this condition.

    Topics: Animals; Benzenesulfonamides; Biomarkers; Blood Pressure; Cell Size; Coronary Vessels; Disease Models, Animal; Gene Expression Regulation; Heart Failure; Humans; Ligation; Male; Myocardial Infarction; Myocytes, Cardiac; Rats; Rats, Inbred Lew; Sulfonamides; Urotensins; Ventricular Function, Left

2006
Urotensin-II receptor blockade with SB-611812 attenuates cardiac remodeling in experimental ischemic heart disease.
    Peptides, 2006, Volume: 27, Issue:11

    It is now well established that urotensin-II (UII) levels are increased in several cardiovascular diseases. We previously demonstrated that UII and the UII receptor (UT) protein levels are significantly increased in the hearts of both humans and rats with congestive heart failure (CHF). We have also recently demonstrated that UII blockade, with a selective UII antagonist, improves heart function in a rat model of ischemic CHF. Here, we evaluated the attenuation of cardiac remodeling associated with UII antagonism in the same rat model of ischemic CHF. Animals were administered a specific UT receptor antagonist, SB-611812 (30 mg/kg/day, gavage), or vehicle 30 min prior to coronary artery ligation followed by daily treatment for 8 weeks. Myocardial interstitial fibrosis was analyzed by Masson's trichrome and picrosirius red staining. RT-PCR analysis was utilized for mRNA expression studies. We used Western blotting to assess levels of collagen types I and III. Mitogenic activity of UII on cultured neonatal cardiac fibroblasts was also evaluated. Following coronary ligation, SB-611812 significantly attenuated both myocardial and endocardial interstitial fibrosis, and reduced collagen type I:III ratio (P<0.01). UII induced proliferation of cardiac fibroblasts and this mitogenic effect was significantly inhibited with 1 microM of SB-611218 (P<0.05). We demonstrate here that selective blockade of UT reduces diastolic dysfunction by decreasing myocardial fibrosis post-coronary ligation in vivo, and inhibits UII-mediated fibroblast proliferation in vitro.

    Topics: Animals; Cells, Cultured; Disease Models, Animal; Fibroblasts; Fibrosis; Gene Expression Profiling; Male; Myocardial Ischemia; Myocardium; Rats; Rats, Inbred Lew; Receptors, G-Protein-Coupled; Reverse Transcriptase Polymerase Chain Reaction; Sulfonamides; Urotensins; Ventricular Remodeling

2006