sb-415286 and Disease-Models--Animal

sb-415286 has been researched along with Disease-Models--Animal* in 7 studies

Other Studies

7 other study(ies) available for sb-415286 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
    Science translational medicine, 2019, 07-10, Volume: 11, Issue:500

    There is a major clinical need for new therapies for the treatment of chronic itch. Many of the molecular components involved in itch neurotransmission are known, including the neuropeptide NPPB, a transmitter required for normal itch responses to multiple pruritogens in mice. Here, we investigated the potential for a novel strategy for the treatment of itch that involves the inhibition of the NPPB receptor NPR1 (natriuretic peptide receptor 1). Because there are no available effective human NPR1 (hNPR1) antagonists, we performed a high-throughput cell-based screen and identified 15 small-molecule hNPR1 inhibitors. Using in vitro assays, we demonstrated that these compounds specifically inhibit hNPR1 and murine NPR1 (mNPR1). In vivo, NPR1 antagonism attenuated behavioral responses to both acute itch- and chronic itch-challenged mice. Together, our results suggest that inhibiting NPR1 might be an effective strategy for treating acute and chronic itch.

    Topics: Animals; Behavior, Animal; Cell-Free System; Dermatitis, Contact; Disease Models, Animal; Ganglia, Spinal; Humans; Mice, Inbred C57BL; Mice, Knockout; Neurons; Pruritus; Receptors, Atrial Natriuretic Factor; Reproducibility of Results; Signal Transduction; Small Molecule Libraries

2019
Insulin and GSK3β-inhibition abrogates the infarct sparing-effect of ischemic postconditioning in ex vivo rat hearts.
    Scandinavian cardiovascular journal : SCJ, 2017, Volume: 51, Issue:3

    Pharmacological treatment of reperfusion injury using insulin and GSK3β inhibition has been shown to be cardioprotective, however, their interaction with the endogenous cardioprotective strategy, ischemic postconditioning, is not known.. Langendorff perfused ex vivo rat hearts were subjected to 30 min of regional ischemia and 120 min of reperfusion. For the first 15 min of reperfusion hearts received either vehicle (Ctr), insulin (Ins) or a GSK3β inhibitor (SB415286; SB41), with or without interruption of ischemic postconditioning (IPost; 3 × 30 s of global ischemia). In addition, the combination of insulin and SB41 for 15 min was assessed.. Insulin, SB41 or IPost significantly reduced infarct size versus vehicle treated controls (IPost 33.5 ± 3.3%, Ins 33.5 ± 3.4%, SB41 30.5 ± 3.0% vs. Ctr 54.7 ± 6.8%, p < 0.01). Combining insulin and SB415286 did not confer additional cardioprotection compared to the treatments given alone (SB41. Pharmacological reperfusion treatment with insulin and SB41 interferes with the cardioprotection afforded by ischemic postconditioning.

    Topics: Aminophenols; Animals; Disease Models, Animal; Glycogen Synthase Kinase 3 beta; Insulin; Ischemic Postconditioning; Isolated Heart Preparation; Male; Maleimides; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Rats, Wistar; Signal Transduction; STAT3 Transcription Factor

2017
Ryanodine receptor blockade reduces amyloid-β load and memory impairments in Tg2576 mouse model of Alzheimer disease.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012, Aug-22, Volume: 32, Issue:34

    In Alzheimer disease (AD), the perturbation of the endoplasmic reticulum (ER) calcium (Ca²⁺) homeostasis has been linked to presenilins, the catalytic core in γ-secretase complexes cleaving the amyloid precursor protein (APP), thereby generating amyloid-β (Aβ) peptides. Here we investigate whether APP contributes to ER Ca²⁺ homeostasis and whether ER Ca²⁺ could in turn influence Aβ production. We show that overexpression of wild-type human APP (APP(695)), or APP harboring the Swedish double mutation (APP(swe)) triggers increased ryanodine receptor (RyR) expression and enhances RyR-mediated ER Ca²⁺ release in SH-SY5Y neuroblastoma cells and in APP(swe)-expressing (Tg2576) mice. Interestingly, dantrolene-induced lowering of RyR-mediated Ca²⁺ release leads to the reduction of both intracellular and extracellular Aβ load in neuroblastoma cells as well as in primary cultured neurons derived from Tg2576 mice. This Aβ reduction can be accounted for by decreased Thr-668-dependent APP phosphorylation and β- and γ-secretases activities. Importantly, dantrolene diminishes Aβ load, reduces Aβ-related histological lesions, and slows down learning and memory deficits in Tg2576 mice. Overall, our data document a key role of RyR in Aβ production and learning and memory performances, and delineate RyR-mediated control of Ca²⁺ homeostasis as a physiological paradigm that could be targeted for innovative therapeutic approaches.

    Topics: Alzheimer Disease; Aminophenols; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Amyloid Precursor Protein Secretases; Analysis of Variance; Animals; Brain; Caffeine; Calcium; Calcium Channel Blockers; Cells, Cultured; Cytosol; Dantrolene; Disease Models, Animal; Embryo, Mammalian; Endoplasmic Reticulum; Enzyme Inhibitors; Exploratory Behavior; Gene Expression Regulation; Humans; Inositol 1,4,5-Trisphosphate Receptors; Maleimides; Maze Learning; Membrane Potentials; Membrane Proteins; Memory Disorders; Mice; Mice, Transgenic; Muscle Relaxants, Central; Mutation; Nerve Tissue Proteins; Neuroblastoma; Neurons; Patch-Clamp Techniques; Peptide Fragments; Phosphorylation; Plaque, Amyloid; Purines; Reaction Time; Recognition, Psychology; RNA, Messenger; Roscovitine; Ryanodine Receptor Calcium Release Channel; Transfection

2012
Discovery of potent and bioavailable GSK-3beta inhibitors.
    Bioorganic & medicinal chemistry letters, 2010, Mar-01, Volume: 20, Issue:5

    Here we report on the discovery of a series of maleimides which have high potency and good selectivity for GSK-3beta. The incorporation of polar groups afforded compounds with good bioavailability. The most potent compound 34 has an IC(50) of 0.6nM for GSK-3beta, over 100-fold selectivity against a panel of other kinases, and shows efficacy in rat osteoporosis models. The X-ray structure of GSK-3beta protein with 34 bound revealed the binding mode of the template and provided insights for future optimization opportunities.

    Topics: Administration, Oral; Animals; Binding Sites; Crystallography, X-Ray; Disease Models, Animal; Drug Discovery; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Indoles; Maleimides; Mice; Protein Kinase C; Protein Kinase Inhibitors; Rats; Structure-Activity Relationship

2010
Regulation of GSK-3beta by calpain in the 3-nitropropionic acid model.
    Hippocampus, 2010, Volume: 20, Issue:8

    Glycogen synthase kinase-3beta (GSK-3beta) is a crucial component in the cascade of events that culminate in a range of neurodegenerative diseases. It is controlled by several pathways, including calpain-mediated cleavage. Calpain mediates in cell death induced by 3-nitropropionic acid (3-NP), but GSK-3beta regulation has not been demonstrated. Here we studied changes in total GSK-3beta protein levels and GSK-3beta phosphorylation at Ser-9 in this model. The 3-NP treatment induced GSK-3beta truncation. This regulation was dependent on calpain activation, since addition of calpeptin to the medium prevented this cleavage. While calpain inhibition prevented 3-NP-induced neuronal loss, inhibition of GSK-3beta by SB-415286 did not. Furthermore, inhibition of cdk5, a known target of calpain involved in 3-NP-induced cell death, also failed to rescue neurons in our model. Our results point to a new target of calpain and indicate possible cross-talk between calpain and GSK-3beta in the 3-NP toxicity pathway. On the basis of our findings, we propose that calpain may modulate 3-NP-induced neuronal loss.

    Topics: Amino Acid Chloromethyl Ketones; Aminophenols; Animals; Calpain; Caspases; Cell Survival; Cells, Cultured; Convulsants; Disease Models, Animal; Embryo, Mammalian; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Hippocampus; Male; Maleimides; Mice; Neurodegenerative Diseases; Neurons; Neuroprotective Agents; Nitro Compounds; Propionates; Purines; Rats; Roscovitine; Signal Transduction; Time Factors

2010
Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2008, Sep-03, Volume: 28, Issue:36

    Axonal regeneration is minimal after CNS injuries in adult mammals and medical treatments to recover neurological deficits caused by axon disconnection are extremely limited. The failure of axonal elongation is principally attributed to the nonpermissive environment and reduced intrinsic growth capacity. In this report, we studied the role of glycogen synthase kinase-3 (GSK-3) inactivation on neurite and axon growth from adult neurons via combined in vitro and in vivo approaches. We found that the major CNS inhibiting substrates including chondroitin sulfate proteoglycans could inactivate protein kinase B (Akt) and activate GSK-3beta signals in neurons. GSK-3 inactivation with pharmacologic inhibitors enhances neurite outgrowth of dorsal root ganglion neurons derived from adult mice or cerebellar granule neurons from postnatal rodents cultured on CNS inhibitors. Application of GSK-3 inhibitors stimulates axon formation and elongation of mature neurons whether in presence or absence of inhibitory substrates. Systemic application of the GSK-3 inhibitor lithium to spinal cord-lesioned rats suppresses the activity of this kinase around lesion. Treatments with GSK-3 inhibitors including a clinical dose of lithium to rats with thoracic spinal cord transection or contusion injuries induce significant descending corticospinal and serotonergic axon sprouting in caudal spinal cord and promote locomotor functional recovery. Our studies suggest that GSK-3 signal is an important therapeutic target for promoting functional recovery of adult CNS injuries and that administration of GSK-3 inhibitors may facilitate the development of an effective treatment to white matter injuries including spinal cord trauma given the wide use of lithium in humans.

    Topics: Aminophenols; Animals; Axons; Behavior, Animal; Cells, Cultured; Central Nervous System; Cerebellum; Chondroitin Sulfate Proteoglycans; Disease Models, Animal; Enzyme Inhibitors; Ganglia, Spinal; Glycogen Synthase Kinase 3; Lithium; Locomotion; Maleimides; Mice; Mice, Inbred C57BL; Nerve Tissue Proteins; Neurons; Proto-Oncogene Proteins c-akt; Rats; Recovery of Function; Serotonin; Spinal Cord Injuries; Time Factors

2008