sb-366791 and Pancreatitis--Chronic

sb-366791 has been researched along with Pancreatitis--Chronic* in 1 studies

Other Studies

1 other study(ies) available for sb-366791 and Pancreatitis--Chronic

ArticleYear
Transient receptor potential vanilloid 1 mediates hyperalgesia and is up-regulated in rats with chronic pancreatitis.
    Gastroenterology, 2007, Volume: 133, Issue:4

    The neurobiologic basis of pancreatic hyperalgesia in chronic pancreatitis (CP) is understood poorly and there is a need to identify novel therapeutic targets. Our aim was to study the role of the transient receptor potential vanilloid 1 (TRPV1), a key integrator of noxious stimuli, in the pathogenesis of pancreatic pain in a rat model of CP.. CP was induced in rats by intraductal injection of trinitrobenzene sulfonic acid. TRPV1 currents in pancreas-specific DRG neurons were measured using perforated patch-clamp techniques. Reverse-transcription polymerase chain reaction was used to measure mRNA expression of TRPV1 in these neurons after laser capture microdissection. Immunofluorescence and Western blot analysis, using TRPV1-specific antibodies, also were performed. Pancreatic hyperalgesia was assessed by rat's nocifensive behavior to electrical stimulation of the pancreas.. CP was associated with a 4-fold increase in capsaicin-induced current density (P < .02), along with an increase in the proportion of pancreas-specific DRG neurons that responded to capsaicin (52.9% in controls vs 79.0% in CP; P < .05). CP also was associated with a significant increase in TRPV1 expression both at the messenger RNA and protein level in whole thoracic DRGs and pancreas-specific sensory neurons. Systemic administration of the TRPV1 antagonist SB-366791 markedly reduced both visceral pain behavior and referred somatic hyperalgesia in rats with CP, but not in control animals.. TRPV1 up-regulation and sensitization is a specific molecular mechanism contributing to hyperalgesia in CP and represents a useful target for treating pancreatic hyperalgesia caused by inflammation.

    Topics: Anilides; Animals; Behavior, Animal; Capsaicin; Cinnamates; Disease Models, Animal; Electric Stimulation; Ganglia, Spinal; Hyperalgesia; Male; Membrane Potentials; Pain Measurement; Pain Threshold; Pancreas; Pancreatitis, Chronic; Rats; Rats, Sprague-Dawley; RNA, Messenger; Time Factors; Trinitrobenzenesulfonic Acid; TRPV Cation Channels; Up-Regulation

2007