sb-334867-a has been researched along with Hypercapnia* in 5 studies
5 other study(ies) available for sb-334867-a and Hypercapnia
Article | Year |
---|---|
Orexinergic system in the locus coeruleus modulates the CO2 ventilatory response.
The orexins are hypothalamic neuropeptides involved in an array of functions such as regulation of sleep/wake states and chemoreception to CO2/pH. The locus coeruleus (LC) is a chemosensitive site and expresses an extensive population of orexin receptor 1 (OX1R). We tested the hypothesis that OX1Rs located in the LC participate in the ventilatory response to hypercapnia in a vigilance state and diurnal cycle-dependent manner. For this, we performed unilateral injections of SB-334867 (OX1R antagonist, 5 mM) into the LC of male Wistar rats and evaluated the ventilatory response to 7 % CO2 during wakefulness and sleep in the dark and light phases of the diurnal cycle. Hypercapnia induced an increase in ventilation (V E) in all groups compared to normocapnic values. However, during the dark phase, but not in the light phase, SB-334867 injection promoted an attenuation of the hypercapnic chemoreflex during wakefulness (V E: vehicle, 1502.6 ± 100 mL kg(-1) min(-1) vs SB-334867, 1200.3 ± 70.0 mL kg(-1) min(-1)) but not during sleep (V E: vehicle, 1383.0 ± 113.9 vs SB-334687, 1287.6 ± 92.1 mL kg(-1) min(-1)), due to changes in tidal volume (V T). We suggest that projections of orexin-containing neurons to the LC contribute, via OX1Rs, to the hypercapnic chemoreflex during wakefulness in the dark phase. Topics: Animals; Benzoxazoles; Carbon Dioxide; Hypercapnia; Locus Coeruleus; Male; Naphthyridines; Orexin Receptor Antagonists; Orexin Receptors; Pulmonary Ventilation; Rats; Rats, Wistar; Reflex; Sleep; Urea; Wakefulness | 2016 |
Activation of the orexin 1 receptor is a critical component of CO2-mediated anxiety and hypertension but not bradycardia.
Acute hypercapnia (elevated arterial CO(2)/H(+)) is a suffocation signal that is life threatening and rapidly mobilizes adaptive changes in breathing and behavioral arousal in order to restore acid-base homeostasis. Severe hypercapnia, seen in respiratory disorders (eg, asthma or bronchitis, chronic obstructive pulmonary disease (COPD)), also results in high anxiety and autonomic activation. Recent evidence has demonstrated that wake-promoting hypothalamic orexin (ORX: also known as hypocretin) neurons are highly sensitive to local changes in CO(2)/H(+), and mice lacking prepro-ORX have blunted respiratory responses to hypercapnia. Furthermore, in a recent clinical study, ORX-A, which crosses blood-brain barrier easily, was dramatically increased in the plasma of patients with COPD and hypercapnic respiratory failure. This is consistent with a rodent model of COPD where chronic exposure to cigarette smoke led to a threefold increase in hypothalamic ORX-A expression. In the present study, we determined the role of ORX in the anxiety-like behavior and cardiorespiratory responses to acute exposure to a threshold panic challenge (ie, 20% CO(2)/normoxic gas). Exposing conscious rats to such hypercapnic, but not atmospheric air, resulted in respiratory, pressor, and bradycardic responses, as well as anxiety-like behavior and increased cellular c-Fos responses in ORX neurons. Systemically, pre-treating rats with a centrally active ORX1 receptor antagonist (30 mg/kg SB334867) attenuated hypercapnic gas-induced pressor and anxiety responses, without altering the robust bradycardia response, and only attenuated breathing responses at offset of the CO(2) challenge. Our results show that the ORX system has an important role in anxiety and sympathetic mobilization during hypercapnia. Furthermore, ORX1 receptor antagonists may be a therapeutic option rapidly treating increased anxiety and sympathetic drive seen during panic attacks and in hypercapnic states such as COPD. Topics: Animals; Anxiety; Benzoxazoles; Bradycardia; Disease Models, Animal; Hypercapnia; Hypertension; Intracellular Signaling Peptides and Proteins; Male; Naphthyridines; Neurons; Neuropeptides; Orexin Receptors; Orexins; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Respiration; Urea | 2012 |
The orexin receptor 1 (OX1R) in the rostral medullary raphe contributes to the hypercapnic chemoreflex in wakefulness, during the active period of the diurnal cycle.
It has been shown that orexin plays an important role in the hypercapnic chemoreflex during wakefulness, and OX(1)Rs in the retrotrapezoid nucleus (RTN) participate in this mechanism. We hypothesized that OX(1)R in the rostral medullary raphe (MR) also contributes to the hypercapnic chemoreflex. We studied the effects on ventilation in air and in 7% CO(2) of focal antagonism of OX(1)R in the rostral MR by microdialysis of SB-334867 in rats during wakefulness and NREM sleep, under dark and light periods. During wakefulness in the dark period, but not in the light period, SB-334867 caused a 16% reduction of the hyperventilation induced by 7% CO(2) compared with vehicle. There was no significant effect in sleep. The basal ventilation, body temperature and V(O2) were not affected. No effect was observed in a separate group of animals which had the microdialysis probe misplaced (peri-raphe). We conclude that OX(1)R in the rostral medullary raphe contribute to the hypercapnic chemoreflex in wakefulness, during the dark period in rats. Topics: Analysis of Variance; Animals; Benzoxazoles; Body Temperature; Chemoreceptor Cells; Circadian Rhythm; Electroencephalography; Electromyography; Hypercapnia; Male; Microdialysis; Naphthyridines; Orexin Receptors; Oxygen Consumption; Pulmonary Ventilation; Raphe Nuclei; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Sleep Stages; Urea; Wakefulness | 2010 |
Antagonism of orexin receptor-1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness.
Recent data from transgenic mice suggest that orexin plays an important role in the ventilatory response to CO(2) during wakefulness. We hypothesized that orexin receptor-1 (OX(1)R) in the retrotrapezoid nucleus (RTN) contributes to chemoreception. In unanaesthetized rats, we measured ventilation using a whole-body plethysmograph, together with EEG and EMG. We dialysed the vehicle and then SB-334867 (OX(1)R antagonist) into the RTN to focally inhibit OX(1)R and studied the effects of both treatments on breathing in air and in 7% CO(2). During wakefulness, SB-334867 caused a 30% reduction of the hyperventilation induced by 7% CO(2) (mean +/- S.E.M., 135 +/- 10 ml (100 g)(-1) min(-1)) compared with vehicle (182 +/- 10 ml (100 g)(-1) min(-1)) (P < 0.01). This effect was due to both decreased tidal volume and breathing frequency. There was a much smaller, though significant, effect in sleep (9% reduction). Neither basal ventilation nor oxygen consumption was affected. The number and duration of apnoeas were similar between control and treatment periods. No effect was observed in a separate group of animals who had the microdialysis probe misplaced (peri-RTN). We conclude that projections of orexin-containing neurons to the RTN contribute, via OX(1)Rs in the region, to the hypercapnic chemoreflex control during wakefulness and to a lesser extent, non-rapid eye movement sleep. Topics: Animals; Benzoxazoles; Hypercapnia; Male; Naphthyridines; Neural Inhibition; Orexin Receptors; Pulmonary Ventilation; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Respiratory Center; Urea; Wakefulness | 2009 |
Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice.
We have previously shown that hypercapnic chemoreflex in prepro-orexin knockout mice (ORX-KO) is attenuated during wake but not sleep periods. In that study, however, hypercapnic stimulation had been chronically applied for 6 h because of technical difficulty in changing the composition of the inspired gas mixture without distorting the animal's vigilance states. In the present study we examined possible involvement of orexin in acute respiratory chemoreflex during wake periods. Ventilation was recorded together with electroencephalography and electromyography before and after intracerebroventricular administration of orexin or an orexin receptor antagonist, SB-334867. A hypercapnic (5 or 10% CO(2)) or hypoxic (15 or 10% O(2)) gas mixture was introduced into the recording chamber for 5 min. Respiratory parameters were analyzed only for quiet wakefulness. When mice breathed normal room air, orexin-A and orexin-B but not vehicle or SB-334867 increased minute ventilation in both ORX-KO and wild-type (WT) mice. As expected, hypercapnic chemoreflex in vehicle-treated ORX- KO mice (0.22 +/- 0.03 mlxmin(-1)xg(-1)x% CO(2)(-1)) was significantly blunted compared with that in WT mice (0.51 +/- 0.05 mlxmin(-1)xg(-1)x% CO(2)(-1)). Supplementation of orexin-A or -B (3 nmol) partially restored the hypercapnic chemoreflex in ORX-KO mice (0.28 +/- 0.03 mlxmin(-1).g(-1)x% CO(2)(-1) for orexin-A and 0.32 +/- 0.04 mlxmin(-1)xg(-1)x% CO(2)(-1) for orexin-B). In addition, injection of SB-334867 (30 nmol) in WT mice decreased the hypercapnic chemoreflex (0.39 +/- 0.04 mlxmin(-1)xg(-1)x% CO(2)(-1)). On the other hand, hypoxic chemoreflex in vehicle-treated ORX-KO and SB-334867-treated WT mice was not different from that in corresponding controls. Our findings suggest that orexin plays a crucial role in CO(2) sensitivity at least during wake periods in mice. Topics: Animals; Benzoxazoles; Carbon Dioxide; Chemoreceptor Cells; Disease Models, Animal; Electroencephalography; Electromyography; Hypercapnia; Hypothalamus; Hypoxia; Injections, Intraventricular; Intracellular Signaling Peptides and Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Activity; Naphthyridines; Neuropeptides; Orexin Receptors; Orexins; Pulmonary Ventilation; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Reflex; Time Factors; Urea; Wakefulness | 2007 |