sb-328437 has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for sb-328437 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
What is the role of CCR3 in choroidal neovascularization?
Topics: Animals; Antibodies, Neutralizing; Biocompatible Materials; Choroidal Neovascularization; Collagen; Disease Models, Animal; Drug Combinations; Laminin; Macular Degeneration; Mice; Mice, Inbred BALB C; Naphthalenes; Phenylalanine; Proteoglycans; Rats; Rats, Sprague-Dawley; Receptors, CCR3 | 2012 |
CCR3 and choroidal neovascularization.
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly in industrialized countries. The "wet" AMD, characterized by the development of choroidal neovacularization (CNV), could result in rapid and severe loss of central vision. The critical role of vascular endothelial growth factor A (VEGF-A) in CNV development has been established and VEGF-A neutralization has become the standard care for wet AMD. Recently, CCR3 was reported to play an important role in CNV development and that CCR3 targeting was reported to be superior to VEGF-A targeting in CNV suppression. We investigated the role of CCR3 in CNV development using the Matrigel induced CNV and found that in both rats and mice, CNV was well-developed in the control eyes as well as in eyes treated with CCR3 antagonist SB328437 or CCR3 neutralizing antibodies. No statistically significant difference in CNV areas was found between the control and SB328437 or CCR3-ab treated eyes. Immunostaining showed no specific expression of CCR3 in or near CNV. In contrast, both VEGF-A neutralizing antibodies and rapamycin significantly suppressed CNV. These results indicate that CCR3 plays no significant role in CNV development and question the therapeutic approach of CCR3 targeting to suppress CNV. On the other hand, our data support the therapeutic strategies of VEGF-A and mTOR (mammalian target of rapamycin) targeting for CNV. Topics: Animals; Antibodies, Neutralizing; Choroidal Neovascularization; Collagen; Disease Models, Animal; Drug Combinations; Laminin; Mice; Mice, Inbred BALB C; Models, Biological; Molecular Targeted Therapy; Naphthalenes; Phenylalanine; Proteoglycans; Rats; Rats, Sprague-Dawley; Receptors, CCR3; TOR Serine-Threonine Kinases; Vascular Endothelial Growth Factor A | 2011 |