sb-290157 and Neutropenia

sb-290157 has been researched along with Neutropenia* in 2 studies

Other Studies

2 other study(ies) available for sb-290157 and Neutropenia

ArticleYear
Complement factors C3a and C5a have distinct hemodynamic effects in the rat.
    International immunopharmacology, 2009, Volume: 9, Issue:6

    In the rat, C5a infusion mediates well-defined effects including hypotension and neutropenia. Conversely, the comparative effect of C3a in the rat is not yet defined. In the current study, we have investigated C3a receptor (C3aR) activation in the rat, using recombinant human C3a, the C3aR agonist WWGKKYRASKLGLAR, which is a C-terminal analogue of C3a, and a nonpeptide C3aR antagonist SB-290157, as pharmacological tools. In vitro, C3a and WWGKKYRASKLGLAR selectively bound to C3aRs and induced degranulation of C3aR-transfected RBL-2H3 cells. C3a or WWGKKYRASKLGLAR-induced degranulation was dose-dependently antagonized in a surmountable fashion by the nonpeptide C3aR antagonist. Intravenous infusion of C3a and WWGKKYRASKLGLAR to rats induced a rapid, transient and concentration-dependent hypertensive response, which was mediated by C3aR-induced prostanoid release. C3a and WWGKKYRASKLGLAR caused a small drop in circulating neutrophils, but a rise in circulating neutrophils was evident after 90-120 min. In contrast to C3a, C5a infusion resulted in hypotension, and rapid and transient neutropenia. These results demonstrate that C3a and C5a mediate distinct effects on blood pressure and circulating polymorphonuclear leukocytes in the rat.

    Topics: Animals; Arginine; Benzhydryl Compounds; Blood Pressure; Cell Degranulation; Cell Line; Complement C3a; Complement C5a; Female; Humans; Neutropenia; Neutrophils; Peptides; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Recombinant Proteins

2009
Comparative anti-inflammatory activities of antagonists to C3a and C5a receptors in a rat model of intestinal ischaemia/reperfusion injury.
    British journal of pharmacology, 2004, Volume: 142, Issue:4

    1. Complement activation is implicated in the pathogenesis of intestinal ischaemia-reperfusion injury (I/R), although the relative importance of individual complement components is unclear. A C3a receptor antagonist N(2)-[(2,2-diphenylethoxy)acetyl]-l-arginine (C3aRA) has been compared with a C5a receptor antagonist (C5aRA), AcF-[OPdChaWR], in a rat model of intestinal I/R. 2. C3aRA (IC(50)=0.15 microm) and C5aRA (IC(50)=0.32 microm) bound selectively to human polymorphonuclear leukocyte (PMN) C3a and C5a receptors, respectively. Effects on circulating neutrophils and blood pressure in the rat were also assessed. 3. Anaesthetised rats, subjected to intestinal ischaemia (30 min) and reperfusion (120 min), were administered intravenously with either (A) the C3aRA (0.1-1.0 mg x kg(-1)); the C5aRA (1.0 mg x kg(-1)); the C3aRA+C5aRA (each 1.0 mg x kg(-1)); or vehicle, 45 min prior, or (B) the C3aRA (1.0 mg x kg(-1)) or vehicle, 120 min prior to reperfusion. 4. The C3aRA and C5aRA, administered 45 min prior to reperfusion, displayed similar efficacies at ameliorating several disease markers (increased oedema, elevated ALT levels and mucosal damage) of rat intestinal I/R. The combination drug treatment did not result in greater injury reduction than either antagonist alone. However, doses of the C3aRA (0.01-10 mg x kg(-1)) caused transient neutropaenia, and the highest dose (10 mg x kg(-1)) also caused a rapid and transient hypertension. 5. The C3aRA (1.0 mg x kg(-1)), delivered 120 min prior to reperfusion to remove the global effect of C3aRA-induced neutrophil sequestration, did not attenuate the markers of intestinal I/R, despite persistent C3aR antagonism at this time. 6. C3aR antagonism does not appear to be responsible for the anti-inflammatory actions of this C3aRA in intestinal I/R in the rat. Instead, C3aRA-mediated global neutrophil tissue sequestration during ischaemia and early reperfusion may account for the protective effects observed.

    Topics: Alanine Transaminase; Animals; Anti-Inflammatory Agents; Arginine; Australia; Benzhydryl Compounds; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Combinations; Female; Humans; Injections, Intravenous; Intestinal Mucosa; Membrane Proteins; Neutropenia; Neutrophils; Peptides, Cyclic; Rats; Rats, Wistar; Receptor, Anaphylatoxin C5a; Receptors, Complement; Reperfusion Injury; Time Factors

2004