sb-269970 and Disease-Models--Animal

sb-269970 has been researched along with Disease-Models--Animal* in 18 studies

Other Studies

18 other study(ies) available for sb-269970 and Disease-Models--Animal

ArticleYear
5-HT7 receptor activation rescues impaired synaptic plasticity in an autistic-like rat model induced by prenatal VPA exposure.
    Neurobiology of learning and memory, 2021, Volume: 183

    Autism spectrum disorder (ASD) is a severe life-long neuropsychiatric disorder. Alterations and imbalance of several neurochemical systems may be involved in ASD pathophysiology, of them, serotonergic neurotransmission dysfunction and deficiency may underlie behavioral abnormalities associated with ASD. However, the functional importance of serotonergic receptors, particularly 5HT7 receptors in ASD pathology remains poorly defined. Serotonin receptor subtype 7 (5-HT7R) plays a direct regulatory role in the development and also for the mature function of the brain, therefore, further studies are necessary to elucidate the role of these receptors in the etiology of autism. To address this issue, we combined here behavioral, electrophysiological methods to further characterize the contribution of 5-HT7Rs in the prenatal valproic acid (VPA) exposure-induced impairment in synaptic plasticity and their impact on the associated behavioral changes. This may help to unravel the underlying cellular mechanisms involved in ASD and can lead to new treatment and/or prevention therapies based on the role of the serotonergic system for autism. Findings revealed that compared to control, autistic-like offspring showed increased anxiety-like behavior, reduced social interaction, decreased locomotor activity, and impaired identification of the novel object. However, administration of 5-HT7Rs agonist, LP-211, for 7 consecutive days before testing from postnatal day 21 to 27 reversed all behavioral deficits induced by prenatal exposure to VPA in offspring. Also, both short-term depression and long-term potentiation were impaired in the autistic-like pups, but activation of 5-HT7Rs rescued the LTP impairment in the autistic-like group so that there was no significant difference between the two groups. Blockade of 5-HT7Rs caused LTP impairment following HFS in the autistic-like group. Besides, there was a significant difference in LTD induction following SB-269970 application between the control and the autistic-like groups measured at first 10 min following TPS. Moreover, both the number and the size of retrograde fast blue-labelled neurons in the raphe nuclei were reduced. Overall, these results provide for the first time, as far as we know, functional evidence for the restorative role of 5-HT7Rs activation against prenatal VPA exposure induced behavioral deficits and hippocampal synaptic plasticity impairment. Therefore, these receptors could be a potential and promising pha

    Topics: Animals; Autism Spectrum Disorder; Behavior, Animal; CA1 Region, Hippocampal; Disease Models, Animal; Elevated Plus Maze Test; Excitatory Postsynaptic Potentials; Female; GABA Agents; Locomotion; Long-Term Potentiation; Neuronal Plasticity; Open Field Test; Phenols; Piperazines; Pregnancy; Prenatal Exposure Delayed Effects; Raphe Nuclei; Rats; Receptors, Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists; Social Behavior; Sulfonamides; Valproic Acid

2021
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
    Science translational medicine, 2019, 07-10, Volume: 11, Issue:500

    There is a major clinical need for new therapies for the treatment of chronic itch. Many of the molecular components involved in itch neurotransmission are known, including the neuropeptide NPPB, a transmitter required for normal itch responses to multiple pruritogens in mice. Here, we investigated the potential for a novel strategy for the treatment of itch that involves the inhibition of the NPPB receptor NPR1 (natriuretic peptide receptor 1). Because there are no available effective human NPR1 (hNPR1) antagonists, we performed a high-throughput cell-based screen and identified 15 small-molecule hNPR1 inhibitors. Using in vitro assays, we demonstrated that these compounds specifically inhibit hNPR1 and murine NPR1 (mNPR1). In vivo, NPR1 antagonism attenuated behavioral responses to both acute itch- and chronic itch-challenged mice. Together, our results suggest that inhibiting NPR1 might be an effective strategy for treating acute and chronic itch.

    Topics: Animals; Behavior, Animal; Cell-Free System; Dermatitis, Contact; Disease Models, Animal; Ganglia, Spinal; Humans; Mice, Inbred C57BL; Mice, Knockout; Neurons; Pruritus; Receptors, Atrial Natriuretic Factor; Reproducibility of Results; Signal Transduction; Small Molecule Libraries

2019
Novel multitarget 5-arylidenehydantoins with arylpiperazinealkyl fragment: Pharmacological evaluation and investigation of cytotoxicity and metabolic stability.
    Bioorganic & medicinal chemistry, 2019, 09-15, Volume: 27, Issue:18

    On the basis of the structures of serotonin modulators or drugs (NAN-190, buspirone, aripiprazole) and phosphodiesterase 4 (PDE4) inhibitors (rolipram, RO-20-1724), a series of novel multitarget 5-arylidenehydantoin derivatives with arylpiperazine fragment was synthesized. Among these compounds, 5-(3,4-dimethoxybenzylidene-3-(4-(4-(2,3-dichlorophenyl)piperazine-1-yl)butyl)-imidazolidine-2,4-dione (13) and 5-(3-cyclopentyloxy-4-methoxybenzylidene-3-(4-(4-(2-methoxyphenyl)piperazine-1-yl)butyl)-imidazolidine-2,4-dione (18) were found to be the most promising showing very high affinity toward 5-HT

    Topics: Animals; Antidepressive Agents; Depression; Disease Models, Animal; Humans; Receptors, Serotonin; Structure-Activity Relationship

2019
Fluoxetine oral treatment discloses 5-HT
    Canadian journal of physiology and pharmacology, 2019, Volume: 97, Issue:2

    Although depression and cardiovascular diseases are related, the role of antidepressants such as fluoxetine (increasing serotonin levels) within cardiac regulation remains unclear. We aimed to determine whether fluoxetine modifies the pharmacological profile of serotonergic influence on vagal cardiac outflow. Rats were treated with fluoxetine (10 mg/kg per day; p.o.) for 14 days or equivalent volumes of drinking water (control group); then, they were pithed and prepared for vagal stimulation. Bradycardic responses were obtained by electrical stimulation of the vagal fibers (3, 6, and 9 Hz) or i.v. acetylcholine (ACh; 1, 5, and 10 μg/kg). The i.v. administration of 5-hydroxytryptamine (5-HT; 10 and 50 μg/kg) inhibited the vagally induced bradycardia. 5-CT (5-HT

    Topics: Administration, Oral; Animals; Antidepressive Agents, Second-Generation; Bradycardia; Depression; Disease Models, Animal; Drug Evaluation, Preclinical; Fluoxetine; Heart; Heart Rate; Humans; Oxadiazoles; Phenols; Rats; Rats, Wistar; Receptor, Serotonin, 5-HT1D; Serotonin; Serotonin 5-HT1 Receptor Antagonists; Serotonin Receptor Agonists; Sulfonamides; Tryptamines; Vagus Nerve

2019
Improvement of ketamine-induced social withdrawal in rats: the role of 5-HT7 receptors.
    Behavioural pharmacology, 2015, Volume: 26, Issue:8 Spec No

    Social withdrawal, one of the core negative symptoms of schizophrenia, can be modelled in the social interaction (SI) test in rats using N-methyl-D-aspartate receptor glutamate receptor antagonists. We have recently shown that amisulpride, an antipsychotic with a high affinity for serotonin 5-HT7 receptors, reversed ketamine-induced SI deficits in rats. The aim of the present study was to further elucidate the potential involvement of 5-HT7 receptors in the prosocial action of amisulpride. Acute administration of amisulpride (3 mg/kg) and SB-269970 (1 mg/kg), a 5-HT7 receptor antagonist, reversed ketamine-induced social withdrawal, whereas sulpiride (20 or 30 mg/kg) and haloperidol (0.2 mg/kg) were ineffective. The 5-HT7 receptor agonist AS19 (10 mg/kg) abolished the prosocial efficacy of amisulpride (3 mg/kg). The coadministration of an inactive dose of SB-269970 (0.2 mg/kg) showed the prosocial effects of inactive doses of amisulpride (1 mg/kg) and sulpiride (20 mg/kg). The anxiolytic chlordiazepoxide (2.5 mg/kg) and the antidepressant fluoxetine (2.5 mg/kg) were ineffective in reversing ketamine-induced SI deficits. The present study suggests that the antagonism of 5-HT7 receptors may contribute towards the mechanisms underlying the prosocial action of amisulpride. These results may have therapeutic implications for the treatment of negative symptoms in schizophrenia and other disorders characterized by social withdrawal.

    Topics: Amisulpride; Animals; Antipsychotic Agents; Behavior, Animal; Disease Models, Animal; Excitatory Amino Acid Antagonists; Ketamine; Male; Phenols; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Receptors, Serotonin; Schizophrenia; Serotonin Antagonists; Social Behavior Disorders; Sulfonamides; Sulpiride

2015
Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion.
    Experimental neurology, 2013, Volume: 247

    In rodent models of spinal cord injury, there is increasing evidence that activation of the locomotor central pattern generator (CPG) below the site of injury with 5-hydroxytryptamine (5-HT) agonists improves locomotor recovery and restores coordination. A promising means of replacing 5-HT control of locomotion is to graft brainstem 5-HT neurons into the spinal cord below the level of the spinal cord injury. However, it is not known whether this approach improves limb coordination because recovery of coordinated stepping has not been documented in detail in previous studies employing this transplantation strategy. Here, adult rats with complete spinal cord transections at the T9/10 level were grafted with E14 fetal neurons from the medulla at the T10/11 vertebra level one month after injury. The B1, B2 and B3 fetal anlagen of brainstem 5-HT neurons, a grouping that included the presumed precursors of recently described 5-HT locomotor command neurons, were used in these grafts. EMG and video recordings of treadmill locomotion evoked by tail stimulation showed full recovery of inter- and intralimb coordination in the grafted rats. We showed, using systemically applied antagonists, that 5-HT₂ and 5-HT₇ receptors mediate the improved locomotion after grafting, but through actions on different populations of spinal locomotor neurons. Specifically, 5-HT₂ receptors control CPG activation as well as motoneuron output, while 5-HT₇ receptors contribute primarily to activity of the locomotor CPG. These results are consistent with the roles for these receptors during locomotion in intact rodents and in rodent brainstem-spinal cord in vitro preparations.

    Topics: Animals; Brain Stem; Disease Models, Animal; Electromyography; Embryo, Mammalian; Female; Fetal Tissue Transplantation; Hindlimb; Locomotion; Paraplegia; Phenols; Psychomotor Performance; Rats; Rats, Inbred Strains; Receptors, Serotonin, 5-HT2; Recovery of Function; Serotonin; Serotonin Antagonists; Spinal Cord Injuries; Sulfonamides

2013
Effects of the selective 5-HT(7) receptor antagonist SB-269970 in animal models of psychosis and cognition.
    Behavioural brain research, 2012, Mar-01, Volume: 228, Issue:1

    The 5-hydroxytryptamine7 (5-HT7) receptor is a G-protein coupled receptor for serotonin that has been implicated in the pathophysiology of psychiatric and neurological disorders including anxiety, depression and schizophrenia. A number of studies have attempted to evaluate the potential role of the 5-HT7 receptor in schizophrenia by utilising genetic or pharmacological tools but to date these have provided conflicting results. Here we investigate the effect of a selective 5-HT7 receptor antagonist, SB-269970, in in vivo psychosis and cognition models and relate efficacy to brain exposures of the compound. SB-269970 significantly attenuated amphetamine-induced rearing and circling in rats. A similar effect was observed in an N-methyl d-aspartic acid (NMDA) receptor antagonist driven psychosis model, where SB-269970 significantly reversed phencyclidine-induced hyperlocomotion, rearing and circling; although the effect was not as robust as with the 5-HT2a receptor antagonist positive control, MDL100,907. SB-269970 also attenuated a temporal deficit in novel object recognition (NOR), indicative of an improvement in recognition memory. Pharmacokinetic analysis of plasma and brain samples taken after behavioural testing confirmed that efficacy was achieved at doses and pre-treatment times where receptor occupancy was substantial. These findings highlight the anti-psychotic and pro-cognitive potential of 5-HT7 receptor antagonists and warrant further studies to explore their therapeutic potential in schizophrenia.

    Topics: Amphetamine; Animals; Animals, Outbred Strains; Cognition; Disease Models, Animal; Fluorobenzenes; Locomotion; Male; Phencyclidine; Phenols; Piperidines; Psychotic Disorders; Rats; Rats, Sprague-Dawley; Receptors, Serotonin; Recognition, Psychology; Serotonin Antagonists; Sulfonamides

2012
5-HT1A and 5-HT7 receptors contribute to lurasidone-induced dopamine efflux.
    Neuroreport, 2012, May-09, Volume: 23, Issue:7

    Lurasidone is a novel, atypical antipsychotic drug with serotonin [5-hydroxytryptamine (5-HT)]2A, 5-HT7, dopamine (DA) D2 antagonist, and 5-HT1A receptor partial agonist properties. The ability of lurasidone to reverse the effects of subchronic administration phencyclidine, to impair novel object recognition in rats, an animal model of cognitive impairment in schizophrenia, is dependent, in part, on its 5-HT1A agonist and 5-HT7 receptor antagonist properties. We tested whether 5-HT1A partial agonism or 5-HT7 antagonism, or both, contributed to the ability of lurasidone to enhance cortical and hippocampal DA efflux, which may be related to its ability to improve cognition. Here, we report that lurasidone, 0.25 and 0.5, but not 0.1 mg/kg, subcutaneously, significantly increased DA efflux in the prefrontal cortex and hippocampus in a dose-dependent manner. Lurasidone, 0.5 mg/kg, also produced a smaller increase in DA efflux in the nucleus accumbens. Pretreatment with the 5-HT1A receptor antagonist, WAY100635 (0.2 mg/kg, subcutaneously), partially blocked the lurasidone-induced cortical and hippocampal DA efflux. Further, subeffective doses of the 5-HT1A receptor agonist, tandospirone (0.2 mg/kg), or the 5-HT7 antagonist, SB269970 (0.3 mg/kg), potentiated the ability of a subeffective dose of lurasidone (0.1 mg/kg) to increase DA efflux in the prefrontal cortex. These findings suggest that the effects of lurasidone on the prefrontal cortex and hippocampus, DA efflux are dependent, at least partially, on its 5-HT1A agonist and 5-HT7 antagonist properties and may contribute to its efficacy to reverse the effects of subchronic phencyclidine treatment and improve schizophrenia.

    Topics: Animals; Disease Models, Animal; Dopamine; Hippocampus; Isoindoles; Lurasidone Hydrochloride; Male; Nucleus Accumbens; Phenols; Piperazines; Prefrontal Cortex; Pyridines; Pyrimidines; Rats; Rats, Sprague-Dawley; Receptor, Serotonin, 5-HT1A; Receptors, Serotonin; Serotonin 5-HT1 Receptor Agonists; Serotonin Antagonists; Sulfonamides; Thiazoles

2012
Involvement of 5-HT₇ receptors in the pathogenesis of temporal lobe epilepsy.
    European journal of pharmacology, 2012, Jun-15, Volume: 685, Issue:1-3

    The 5-hydroxytryptamine 7 (5-HT(7)) receptor is the most recently classified member of the serotonin receptor family. The localization of 5-HT(7) receptors and the biological activity of its ligands have suggested that 5-HT(7) receptors might be involved in the pathogenesis of epilepsy. In the present study, we investigated the correlation between temporal lobe epilepsy and 5-HT(7) receptors using pilocarpine-induced rat models of temporal lobe epilepsy and surgical samples of temporal neocortex from intractable epilepsy patients. An analysis of electroencephalogram (EEG) and behavioral changes before and after the treatment of SB269970 hydrochloride (a selective 5-HT(7) receptor antagonist, 10 mg/kg, i.p.) and AS19 (a selective 5-HT(7) receptor agonist, 10 mg/kg, s.c.) demonstrated that in epileptic rats the activation of 5-HT(7) receptors could increase the number of seizures, which could be reduced by a 5-HT(7) receptor antagonist. Moreover, the expression of 5-HT(7) receptors was higher in the epilepsy group compared with the nonepileptic group in both rat and human brain tissues. The present results suggested that 5-HT(7) receptors participate in the pathogenesis of temporal lobe epilepsy, and a 5-HT(7) receptor antagonist may be used as a therapeutic alternative for temporal lobe epilepsy.

    Topics: Adolescent; Adult; Animals; Behavior, Animal; Child; Disease Models, Animal; Electroencephalography; Epilepsy, Temporal Lobe; Female; Humans; Male; Middle Aged; Neocortex; Phenols; Pilocarpine; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptors, Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists; Sulfonamides; Temporal Lobe; Tetrahydronaphthalenes; Young Adult

2012
Serotonin 5-HT(7) receptor blockade reverses behavioral abnormalities in PACAP-deficient mice and receptor activation promotes neurite extension in primary embryonic hippocampal neurons: therapeutic implications for psychiatric disorders.
    Journal of molecular neuroscience : MN, 2012, Volume: 48, Issue:3

    The serotonin 5-HT(7) receptor has been linked to various psychiatric disorders, including schizophrenia, anxiety and depression, and is antagonized by antipsychotics such as risperidone, clozapine and lurasidone. In this study, we examined whether inhibiting the 5-HT(7) receptor could reverse behavioral abnormalities in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP), an experimental mouse model for psychiatric disorders such as schizophrenia. The selective 5-HT(7) antagonist SB-269970 effectively suppressed abnormal jumping behavior in PACAP-deficient mice. SB-269970 tended to alleviate the higher immobility in the forced swim test in PACAP-deficient mice, although SB-269970 reduced the immobility also in wild-type mice. In addition, we found that mutant mice had impaired performance in the Y-maze test, which was reversed by SB-269970. In the mutant mouse brain, 5-HT(7) protein expression did not differ from wild-type mice. In primary embryonic hippocampal neurons, the 5-HT(7) agonist AS19 increased neurite length and number. Furthermore, SB-269970 significantly inhibited the increase in neurite extension mediated by the 5-HT(1A/7) agonist 8-OH-DPAT. These results indicate that 5-HT(7) receptor blockade ameliorates psychomotor and cognitive deficits in PACAP-deficient mice, providing additional evidence that the 5-HT(7) receptor is a rational target for the treatment of psychiatric disorders.

    Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Animals; Antipsychotic Agents; Cell Count; Cells, Cultured; Disease Models, Animal; Drug Evaluation, Preclinical; Exploratory Behavior; Freezing Reaction, Cataleptic; Hippocampus; Hyperkinesis; Maze Learning; Mice; Mice, Inbred ICR; Mice, Knockout; Mice, Neurologic Mutants; Nerve Tissue Proteins; Neurites; Phenols; Physical Endurance; Pituitary Adenylate Cyclase-Activating Polypeptide; Pyrazoles; Receptors, Serotonin; Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists; Sulfonamides; Tetrahydronaphthalenes

2012
Pharmacological blockade of 5-HT7 receptors as a putative fast acting antidepressant strategy.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2011, Volume: 36, Issue:6

    Current antidepressants still display unsatisfactory efficacy and a delayed onset of therapeutic action. Here we show that the pharmacological blockade of serotonin 7 (5-HT(7)) receptors produced a faster antidepressant-like response than the commonly prescribed antidepressant fluoxetine. In the rat, the selective 5-HT(7) receptor antagonist SB-269970 counteracted the anxiogenic-like effect of fluoxetine in the open field and exerted an antidepressant-like effect in the forced swim test. In vivo, 5-HT(7) receptors negatively regulate the firing activity of dorsal raphe 5-HT neurons and become desensitized after long-term administration of fluoxetine. In contrast with fluoxetine, a 1-week treatment with SB-269970 did not alter 5-HT firing activity but desensitized cell body 5-HT autoreceptors, enhanced the hippocampal cell proliferation, and counteracted the depressive-like behavior in olfactory bulbectomized rats. Finally, unlike fluoxetine, early-life administration of SB-269970, did not induce anxious/depressive-like behaviors in adulthood. Together, these findings indicate that the 5-HT(7) receptor antagonists may represent a new class of antidepressants with faster therapeutic action.

    Topics: Animals; Antidepressive Agents; Depressive Disorder; Disease Models, Animal; Male; Phenols; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Serotonin; Serotonin Antagonists; Sulfonamides

2011
The 5-HT(7) receptor as a mediator and modulator of antidepressant-like behavior.
    Behavioural brain research, 2010, May-01, Volume: 209, Issue:1

    The 5-HT(7) receptor has been suggested as a target for treating depression since inactivation or blockade of the receptor has an antidepressant-like behavioral effect. The present study investigated possible interactions between various classes of drugs with antidepressant properties and blockade or inactivation of the 5-HT(7) receptor. Immobility despair in the tail suspension test and the forced swim test was evaluated in mice lacking the 5-HT(7) receptor (5-HT(7)(-/-)) and in wild-type controls (5-HT(7)(+/+)) following acute drug treatments. Citalopram, a selective serotonin reuptake inhibitor and widely used antidepressant, dose-dependently reduced immobility in the tail suspension test in both 5-HT(7)(+/+) and 5-HT(7)(-/-) mice. Combining doses of citalopram and the 5-HT(7) receptor antagonist SB-269970 that by themselves did not affect behavior, reduced immobility in 5-HT(7)(+/+) mice in both the tail suspension test and the forced swim test. No effect was seen in 5-HT(7)(-/-) mice. Desipramine and reboxetine, two norepinephrine reuptake inhibitors, dose-dependently reduced immobility in the tail suspension test in 5-HT(7)(+/+) mice, but had no effect in 5-HT(7)(-/-) mice. A synergistic effect between desipramine and SB-269970 was found in both behavioral tests in 5-HT(7)(+/+) mice. Reboxetine combined with SB-269970 had effect only in the forced swim test. GBR 12909, a dopamine reuptake inhibitor, dose-dependently reduced tail suspension test immobility in both genotypes. There was no interaction between GBR 12909 and SB-269970. Aripiprazole, an antipsychotic, reduced immobility in both tests in 5-HT(7)(+/+) mice, but not in 5-HT(7)(-/-) mice. The results show that the 5-HT(7) receptor is required for the observed interaction between this receptor and antidepressants such as citalopram. The data furthermore support the hypothesis that the 5-HT(7) receptor might be a suitable target for treating depression.

    Topics: Animals; Antidepressive Agents; Antipsychotic Agents; Aripiprazole; Citalopram; Corticosterone; Depression; Disease Models, Animal; Dopamine Uptake Inhibitors; Dose-Response Relationship, Drug; Drug Synergism; Hindlimb Suspension; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Activity; Phenols; Piperazines; Quinolones; Receptors, Serotonin; Serotonin Antagonists; Sulfonamides; Swimming

2010
Selective inhibition of 5-HT7 receptor reduces CGRP release in an experimental model for migraine.
    Headache, 2010, Volume: 50, Issue:4

    To investigate the role of 5-HT(7) receptors on the release of calcitonin gene-related peptide (CGRP) in an animal model of migraine.. Calcitonin gene-related peptide has been identified as a key neuropeptide in the pathophysiology of migraine. It is elevated in the external jugular vein during migraine attacks in humans and after stimulation of the trigeminal ganglion in animal models of migraine. This can be treated with the 5-HT(1B/1D) receptor agonist sumatriptan concomitant with headache relief. Nevertheless, triptans, the most effective agents for the treatment of acute migraine attacks, are not effective in more than 1/3 of migraineurs and less than 50% of migraineurs achieve complete pain freedom. This indicates other serotonin receptors may be involved in the pathophysiology of migraine. Increasing evidence has shown that 5-HT(7) receptors may be involved in migraine pathogenesis. However, direct evidence for the role of 5-HT(7) receptors in migraine is still lacking.. Unilateral electrical stimulation of the trigeminal ganglion (TGES) was performed in anesthetized male Sprague-Dawley rats. Animals were pretreated with sumatriptan (300 microg/kg, i.v.), selective 5-HT(7) receptor antagonist SB269970 (5, 10 mg/kg, s.c.), potential 5-HT(7) receptor agonist AS19 (5, 10 mg/kg, s.c.) or co-administration of SB269970 and AS19 (10 mg/kg, s.c.). Serum CGRP concentrations in the ipsilateral jugular vein were determined before and at 2 and 5 minutes after the start of TGES.. Our results showed that sumatriptan almost completely inhibited the release of CGRP evoked by TGES. Pre-administration of SB269970 (5, 10 mg/kg) caused a significant decrease in serum CGRP concentrations at 2 and 5 minutes following the onset of TGES, with a less inhibitory effect compared with sumatriptan. AS19 had no significant effect on CGRP release, while the SB269970-induced inhibitory effect was reversed by AS19.. Selective inhibition of 5-HT(7) receptors partly reduced CGRP release evoked by TGES. These findings suggest that 5-HT(7) receptors may play a role in the pathophysiology of migraine.

    Topics: Animals; Calcitonin Gene-Related Peptide; Disease Models, Animal; Electric Stimulation; Male; Migraine Disorders; Neural Inhibition; Nociceptors; Phenols; Presynaptic Terminals; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptors, Serotonin; Sensory Receptor Cells; Serotonin Antagonists; Serotonin Receptor Agonists; Sulfonamides; Tetrahydronaphthalenes; Trigeminal Ganglion; Trigeminal Nerve; Tryptamines

2010
Effects of SB-269970, a 5-HT7 receptor antagonist, in mouse models predictive of antipsychotic-like activity.
    Behavioural pharmacology, 2008, Volume: 19, Issue:2

    5-HT7 receptors have been linked to a number of psychiatric disorders including anxiety and depression. The localization of 5-HT7 receptors in the thalamus, a key sensory processing center, and the high affinity of many atypical antipsychotic compounds for these receptors have led to the speculation of the utility of 5-HT7 antagonists in schizophrenia. The goal of these studies was to examine the effects of pharmacologic blockade and genetic ablation of 5-HT7 receptors in animal models predictive of antipsychotic-like activity. We evaluated the effects of SB-269970, a selective 5-HT7 receptor antagonist, on amphetamine and ketamine-induced hyperactivity and prepulse inhibition (PPI) deficits. In addition, sensorimotor gating function and locomotor activity were evaluated in 5-HT7 knockout mice. Locomotor activity was measured for up to 180 min using an automated infrared photobeam system, and PPI was evaluated in startle chambers. SB-269970 (3, 10 and 30 mg/kg, intraperitoneally) significantly blocked amphetamine [3 mg/kg, subcutaneously (s.c.)] and ketamine (30 mg/kg, s.c.)-induced hyperactivity and reversed amphetamine (10 mg/kg, s.c.)-induced but not ketamine (30 mg/kg, s.c.)-induced PPI deficits, without changing spontaneous locomotor activity and startle amplitude. The largest dose of SB-269970 did not block the effects of amphetamine in 5-HT7 knockout mice. Collectively, these results indicate that blockade of 5-HT7 receptors partially modulates glutamatergic and dopaminergic function and could be clinically useful for the treatment of positive symptoms of schizophrenia.

    Topics: Amphetamine; Animals; Antipsychotic Agents; Arousal; Brain; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Glutamine; Injections, Intraperitoneal; Injections, Subcutaneous; Ketamine; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Activity; Phenols; Psychotic Disorders; Receptors, Serotonin; Reflex, Startle; Sulfonamides; Synaptic Transmission

2008
Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression.
    Neuropharmacology, 2006, Volume: 51, Issue:3

    The aim of the present study was to examine the effect of the selective 5-HT7 receptor antagonist SB 269970 (0.25-20 mg/kg) in the behavioral tests commonly used for predicting anxiolytic- and antidepressant-like activity. Diazepam and imipramine were used as standard drugs. SB 269970 (in one medium dose of 0.5 or 1 mg/kg) exerted a specific antianxiety-like effect in the Vogel drinking test in rats, in the elevated plus-maze test in rats and in the four-plate test in mice. Moreover, SB 269970 (in one medium dose of 5 or 10 mg/kg) showed antidepressant-like activity in the forced swimming and the tail suspension tests in mice. At the same time, the tested compound at doses of 1-20 mg/kg did not change the spontaneous locomotor activity of mice. The potential anxiolytic and antidepressant effects produced by SB 269970 were weaker than those of the reference drugs employed. It is noteworthy that the active doses of SB 269970 were devoid of any visible motor side-effects. In conclusion, the results of our studies indicate that 5-HT7 receptor antagonists may play a role in the therapy of both anxiety and depression.

    Topics: Analysis of Variance; Animals; Anti-Anxiety Agents; Antidepressive Agents, Tricyclic; Anxiety; Behavior, Animal; Conflict, Psychological; Depression; Diazepam; Differential Threshold; Disease Models, Animal; Dose-Response Relationship, Drug; Drinking Behavior; Hindlimb Suspension; Imipramine; Male; Maze Learning; Motor Activity; Phenols; Rats; Rats, Wistar; Receptors, Serotonin; Serotonin Antagonists; Sulfonamides; Swimming

2006
5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern.
    Biological psychiatry, 2005, Nov-15, Volume: 58, Issue:10

    The 5-hydroxytryptamine7 receptor (5-HT7) is implicated in circadian rhythm phase resetting, and 5-HT7 receptor-selective antagonists alter rapid eye movement (REM) sleep parameters in a pattern opposite from those in patients with clinical depression.. As sleep, circadian rhythm, and mood regulation are related, we examined 5-HT7 receptor knockout mice in two behavioral models of depression. The forced swim and tail suspension tests are highly predictive for antidepressant drug activity.. Unmedicated 5-HT7-/- mice showed decreased immobility in both tests, consistent with an antidepressantlike behavior. The selective 5-HT7 receptor antagonist SB-269970 also decreased immobility. The selective serotonin reuptake inhibitor citalopram, a widely used antidepressant, decreased immobility in both 5-HT7+/+ and 5-HT7-/- mice in the tail suspension test, suggesting that it utilizes an independent mechanism. The 5-HT7-/- mice spent less time in and had less frequent episodes of REM sleep, also consistent with an antidepressantlike state.. The 5-HT7 receptor might have a role in mood disorders and antagonists might have therapeutic value as antidepressants.

    Topics: Animals; Antidepressive Agents; Behavior, Animal; Circadian Rhythm; Depressive Disorder; Disease Models, Animal; Immobility Response, Tonic; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Phenols; Receptors, Serotonin; Sleep; Sleep, REM; Sulfonamides

2005
Pronociceptive role of peripheral and spinal 5-HT7 receptors in the formalin test.
    Pain, 2005, Volume: 117, Issue:1-2

    The possible pronociceptive role of peripheral and spinal 5-HT7 receptors in the formalin test was assessed. Local administration of 5-HT7 (SB-269970, 2.5-77.1 nmol/paw), but not 5-HT(1A) (WAY-100635, 1-60 nmol/paw), receptor antagonist significantly reduced formalin-induced flinching. Local 5-hydroxytryptamine (5-HT, 3-100 nmol/paw) or 5-carboxamidotryptamine (5-CT, 0.3-3 nmol/paw) (a 5-HT7/1A receptor agonist) augmented, in a dose-dependent manner, 0.5% formalin-induced nociceptive behavior. The local pronociceptive effect of 5-HT or 5-CT was significantly reduced by SB-269970 (25 and 77.1 nmol/paw), but not by WAY-100635 (10 nmol/paw). 5-HT7 receptors were observed in myelinated and unmyelinated axons of the digital nerves in rat hindpaw. Intrathecal SB-269970 (2.5-77.1 nmol/rat) or WAY-100635 (1-50 nmol/rat) did not modify 1% formalin-induced nociceptive behavior. Spinal 5-HT (25-200 nmol/rat) significantly reduced formalin-induced flinching behavior during phase 2. At lower doses (0.1-3 nmol/rat) intrathecal 5-CT dose-dependently increased flinching during phase 2. In contrast, higher doses (10-30 nmol/rat) of 5-CT reduced formalin-induced nociceptive behavior during both phases. The spinal pronociceptive effect of 5-CT was reduced by SB-269970 (7.7-77 nmol/rat), but not by WAY-100635 (10 nmol/rat). In addition, the spinal antinociceptive effect of 5-CT was partially reversed by WAY-100635 (10 nmol/rat). The spinal antinociceptive effect of 5-HT was unaffected either by SB-269970 (77 nmol/rat) or WAY-100635 (10 nmol/rat). Data suggest that 5-HT7, but not 5-HT1A, receptors play a pronociceptive role in peripheral and spinal sites in the rat formalin test.

    Topics: Analysis of Variance; Animals; Area Under Curve; Behavior, Animal; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Interactions; Female; Immunohistochemistry; Neuralgia; Nociceptors; Pain Measurement; Peripheral Nerves; Phenols; Piperazines; Pyridines; Rats; Rats, Wistar; Receptors, Serotonin; Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists; Spinal Cord; Sulfonamides; Tetrazolium Salts; Time Factors

2005