sb-223412 and Miosis

sb-223412 has been researched along with Miosis* in 2 studies

Other Studies

2 other study(ies) available for sb-223412 and Miosis

ArticleYear
Discovery of a novel class of selective non-peptide antagonists for the human neurokinin-3 receptor. 2. Identification of (S)-N-(1-phenylpropyl)-3-hydroxy-2-phenylquinoline-4-carboxamide (SB 223412).
    Journal of medicinal chemistry, 1999, Mar-25, Volume: 42, Issue:6

    Optimization of the previously reported 2-phenyl-4-quinolinecarboxamide NK-3 receptor antagonist 14, with regard to potential metabolic instability of the ester moiety and affinity and selectivity for the human neurokinin-3 (hNK-3) receptor, is described. The ester functionality could be successfully replaced by the ketone (31) or by lower alkyl groups (Et, 21, or n-Pr, 24). Investigation of the substitution pattern of the quinoline ring resulted in the identification of position 3 as a key position to enhance hNK-3 binding affinity and selectivity for the hNK-3 versus the hNK-2 receptor. All of the chemical groups introduced at this position, with the exception of halogens, increased the hNK-3 binding affinity, and compounds 53 (3-OH, SB 223412, hNK-3-CHO binding Ki = 1.4 nM) and 55 (3-NH2, hNK-3-CHO binding Ki = 1.2 nM) were the most potent compounds of this series. Selectivity studies versus the other neurokinin receptors (hNK-2-CHO and hNK-1-CHO) revealed that 53 is about 100-fold selective for the hNK-3 versus hNK-2 receptor, with no affinity for the hNK-1 at concentrations up to 100 microM. In vitro studies demonstrated that 53 is a potent functional antagonist of the hNK-3 receptor (reversal of senktide-induced contractions in rabbit isolated iris sphincter muscles and reversal of NKB-induced Ca2+ mobilization in CHO cells stably expressing the hNK-3 receptor), while in vivo this compound showed oral and intravenous activity in NK-3 receptor-driven models (senktide-induced behavioral responses in mice and senktide-induced miosis in rabbits). Overall, the biological data indicate that (S)-N-(1-phenylpropyl)-3-hydroxy-2-phenylquinoline-4-carboxamide (53, SB 223412) may serve as a pharmacological tool in animal models of disease to assess the functional and pathophysiological role of the NK-3 receptor and to establish therapeutic indications for non-peptide NK-3 receptor antagonists.

    Topics: Animals; Calcium; Cell Line; CHO Cells; Cloning, Molecular; Cricetinae; Humans; In Vitro Techniques; Iris; Mice; Miosis; Motor Activity; Muscle Contraction; Muscle, Smooth; Peptide Fragments; Quinolines; Rabbits; Radioligand Assay; Receptors, Neurokinin-3; Structure-Activity Relationship; Substance P

1999
In vitro and in vivo characterization of NK3 receptors in the rabbit eye by use of selective non-peptide NK3 receptor antagonists.
    British journal of pharmacology, 1997, Volume: 122, Issue:3

    1. Inhibition of NK3 receptor agonist-induced contraction in the rabbit isolated iris sphincter muscle was used to assess the in vitro functional activity of three 2-phenyl-4-quinolinecarboxamides, members of a novel class of potent and selective non-peptide NK3 receptor antagonists. In addition, an in vivo correlate of this in vitro response, namely NK3 receptor agonist-induced miosis in conscious rabbits, was characterized with some of these antagonists. 2. In vitro senktide (succinyl-[Asp9,MePhe8]-substance P (6-11) and [MePhe7]-neurokinin B ([MePhe7]-NKB) were potent contractile agents in the rabbit iris sphincter muscle but exhibited quite different profiles. Senktide produced monophasic log concentration-effect curves with a mean pD2=9.03+/-0.06 and mean nH=1.2+/-0.02 (n=14). In contrast, [MePhe7]-NKB produced shallow log concentration-effect curves which often appeared biphasic (nH=0.54+/-0.04, n=8), preventing the accurate determination of pD2 values. 3. The contractile responses to the NK3 receptor agonist senktide were antagonized in a surmountable and concentration-dependent manner by SB 223412 ((-)-(S)-N-(alpha-ethylbenzyl)-3-hydroxy-2-phenylquinoline-4-ca rboxamide; 3-30 nM, pA2=8.4, slope=1.8+/-0.3, n=4). SB 222200 ((-)-(S)-N-(alpha-ethylbenzyl)-3-methyl-2-phenylquinoline-4-car box amide; 30-300 nM, pA2=7.9, slope=1.4+/-0.06, n=4) and SB 218795 ((-)-(R)-N-(alpha-methoxycarbonylbenzyl)-2-phenylquinoline-4-carboxamide; 0.3 and 3 microM apparent pKB=7.4+/-0.06, n=6). 4. Contractile responses to the NK3 receptor agonist [MePhe7]-NKB in the rabbit iris sphincter muscle were unaffected by SB 218795 (0.3 and 3 microM, n=8). In contrast, SB 223412 (30 and 300 microM n=4) and SB 222200 (0.3 and 3 microM, n=4) inhibited responses to low concentrations (< or = 1 nM), to a greater extent than higher concentrations (> 1 nM) of [MePhe7]-NKB. Furthermore, log concentration-effect curves to [MePhe7]-NKB became steeper and monophasic in the presence of each antagonist. 5. SB 218795 (3 microM, n=4) had no effect on contractions induced by transmural nerve stimulation (2 Hz) or substance P, exemplifying the selectivity of this class of antagonist for functional NK3 receptors over NK1 receptors in the rabbit. 6. In vivo, senktide (1, 10 and 25 microg i.v., i.e. 1.2, 11.9 and 29.7 nmol, respectively) induced concentration-dependent bilateral miosis in conscious rabbits (maximum pupillary constriction=4.25+/-0.25 mm; basal pupillary diameter 7.75+/-0.48 mm; n=4).

    Topics: Animals; In Vitro Techniques; Iris; Male; Miosis; Muscle Contraction; Muscle, Smooth; Neurokinin B; Neurokinin-1 Receptor Antagonists; Peptide Fragments; Piperidines; Quinolines; Rabbits; Receptors, Neurokinin-3; Substance P

1997
chemdatabank.com