sb-215505 and Cardiomegaly

sb-215505 has been researched along with Cardiomegaly* in 2 studies

Other Studies

2 other study(ies) available for sb-215505 and Cardiomegaly

ArticleYear
Serotonin 5-HT(2B) receptor blockade prevents reactive oxygen species-induced cardiac hypertrophy in mice.
    Hypertension (Dallas, Tex. : 1979), 2008, Volume: 52, Issue:2

    We established previously that 5-HT(2B) receptors are involved in cardiac hypertrophy through the regulation of hypertrophic cytokines in cardiac fibroblasts. Moreover, the generation of reactive oxygen species and tumor necrosis factor-alpha through the activation of reduced nicotinamide-adenine dinucleotide phosphate [NAD(P)H] oxidase has been implicated in cardiac hypertrophy. In this study, we investigated whether 5-HT(2B) receptors could be involved in the development of cardiac hypertrophy associated with superoxide anion production. Therefore, we measured the effects of serotonergic 5-HT(2B) receptor blockade on left-ventricular superoxide anion generation in 2 established pharmacological models of cardiac hypertrophy, ie, angiotensin II and isoproterenol infusions in mice. Angiotensin II infusion for 14 days increased superoxide anion concentration (+32%), NAD(P)H oxidase maximal activity (+84%), and p47(phox) NAD(P)H oxidase subunit expression in the left ventricle together with hypertension (+37 mm Hg) and cardiac hypertrophy (+17% for heart weight:body weight). The 5-HT(2B) receptor blockade by a selective antagonist (SB215505) prevented the increase in cardiac superoxide generation and hypertrophy. Similarly, infusion for 5 days of isoproterenol increased left-ventricular NAD(P)H oxidase activity (+48%) and cardiac hypertrophy (+31%) that were prevented by the 5-HT(2B) receptor blockade. Finally, in the primary culture of left-ventricular cardiac fibroblasts, angiotensin II and isoproterenol stimulated NAD(P)H oxidase activity. This activation was prevented by SB215505. These findings suggest that the 5-HT(2B) receptor may represent a new target to reduce cardiac hypertrophy and oxidative stress. Its blockade affects both angiotensin II and beta-adrenergic trophic responses without significant hemodynamic alteration.

    Topics: Angiotensin II; Animals; Cardiomegaly; Disease Models, Animal; Echocardiography, Doppler; Indoles; Isoproterenol; Mice; Mice, Inbred Strains; NADP; Probability; Quinolines; Random Allocation; Reactive Oxygen Species; Receptor, Serotonin, 5-HT2B; Reference Values; Sensitivity and Specificity; Serotonin Antagonists; Superoxides

2008
Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha cytokine production by ventricular fibroblasts.
    Circulation, 2004, Aug-24, Volume: 110, Issue:8

    The serotonergic 5-HT2B receptor regulates cardiomyocyte development and growth. A putative contribution of this receptor to fibroblast-dependent cardiac function has not been identified.. By mimicking sympathetic stimulation with chronic isoproterenol perfusion in vivo, we found that mice developed a cardiac hypertrophy, which was prevented by exposure to the 5-HT2B receptor antagonists SB206553 or SB215505 or in 5-HT2B receptor-knockout mice. The isoproterenol-induced hypertrophy was associated with an increase in the plasma levels of interleukin-1beta and tumor necrosis factor-alpha but not interleukin-6. In contrast, the plasma isoproterenol-induced cytokine increase was not observed in either 5-HT2B receptor-mutant or wild-type mice perfused with isoproterenol+SB206553. We demonstrated that stimulation of wild-type cardiac fibroblasts by isoproterenol markedly increased the production of the interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha cytokines. Strikingly, we found that this isoproterenol-induced cytokine production was abolished by SB206553 or in 5-HT2B receptor-knockout fibroblasts. Serotonin also stimulated production of the 3 cytokines in wild-type fibroblasts, which was effectively reduced in 5-HT2B receptor-knockout fibroblasts.. Our results demonstrate for the first time that 5-HT2B receptors are essential for isoproterenol-induced cardiac hypertrophy, which involves the regulation of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha cytokine production by cardiac fibroblasts.

    Topics: Adrenergic beta-1 Receptor Antagonists; Adrenergic beta-2 Receptor Antagonists; Adrenergic beta-Agonists; Animals; Cardiomegaly; Cells, Cultured; Drug Evaluation, Preclinical; Fibroblasts; Gene Expression Regulation; Heart Ventricles; Imidazoles; Indoles; Interleukin-1; Interleukin-6; Isoproterenol; Mice; Mice, Knockout; Myocytes, Cardiac; Propanolamines; Pyridines; Quinolines; Receptor, Serotonin, 5-HT2B; Receptors, Adrenergic, beta-1; Receptors, Adrenergic, beta-2; Serotonin 5-HT2 Receptor Antagonists; Serotonin Antagonists; Sympathetic Nervous System; Sympathomimetics; Tumor Necrosis Factor-alpha

2004