saxitoxin has been researched along with Heart-Failure* in 3 studies
3 other study(ies) available for saxitoxin and Heart-Failure
Article | Year |
---|---|
Chronic heart failure slows late sodium current in human and canine ventricular myocytes: implications for repolarization variability.
Late Na(+) current (I(NaL)) in human and dog hearts has been implicated in abnormal repolarization associated with heart failure (HF). HF slows inactivation gating of late Na(+) channels, which could contribute to these abnormalities.. To test how altered gating affects I(NaL) time course, Na(+) influx, and action potential (AP) repolarization.. I(NaL) and AP were measured by patch clamp in left ventricular cardiomyocytes from normal and failing hearts of humans and dogs. Canine HF was induced by coronary microembolization.. I(NaL) decay was slower and I(NaL) density was greater in failing hearts than in normal hearts at 24 degrees C (human hearts: tau=659+/-16 vs. 529+/-21 ms; n=16 and 4 hearts, respectively; mean+/-SEM; p<0.002; dog hearts: 561+/-13 vs. 420+/-17 ms; and 0.307+/-0.014 vs. 0.235+/-0.019 pA/pF; n=25 and 14 hearts, respectively; p<0.005) and at 37 degrees C this difference tended to increase. These I(NaL) changes resulted in much greater (53.6%) total Na(+) influx in failing cardiomyocytes. I(NaL) was sensitive to cadmium but not to cyanide and exhibited low sensitivity to saxitoxin (IC(50)=62 nM) or tetrodotoxin (IC(50)=1.2 muM), tested in dogs. A 50% I(NaL) inhibition by toxins or passing current opposite to I(NaL), decreased beat-to-beat AP variability and eliminated early afterdepolarizations in failing cardiomyocytes.. Chronic HF leads to larger and slower I(NaL) generated mainly by the cardiac-type Na(+) channel isoform, contributing to larger Na(+) influx and AP duration variability. Interventions designed to reduce/normalize I(NaL) represent a potential cardioprotective mechanism in HF via reduction of related Na(+) and Ca(2+) overload and improvement of repolarization. Topics: Action Potentials; Adult; Animals; Cadmium; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Female; Heart; Heart Failure; Heart Ventricles; Humans; Ion Channel Gating; Ion Transport; Male; Middle Aged; Myocytes, Cardiac; Patch-Clamp Techniques; Saxitoxin; Sodium; Sodium Channels; Tetrodotoxin | 2007 |
Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: role of sustained inward current.
We previously showed that a canine model of chronic heart failure (HF) produced by multiple coronary microembolizations manifests ventricular arrhythmias similar to those observed in patients with chronic HF. In the present study, we used single canine cardiomyocytes isolated from the left ventricle (LV) of normal dogs (n = 13) and dogs with HF (n = 15) to examine the cellular substrate of these arrhythmias. Action potentials (APs) and ion currents were measured by perforated and whole cell patch clamp, respectively. We found prolonged APs and alterations of AP duration resulting in early afterdepolarizations (EADs) at the low pacing rates of 0.5 Hz and 0.2 Hz. Na+ channel blockers saxitoxin (STX, 100 nM) and lidocaine (90 microM) reduced AP duration dispersion and abolished EADs in HF cardiomyocytes. The steady-state current (Iss)-voltage relation, in the voltage range from -25 mV to 25 mV analogous to the AP plateau level, was significantly shifted inward in HF cardiomyocytes. STX and lidocaine shifted the Iss-voltage relationship in an outward direction. The shifts produced by both drugs was significantly greater in cardiomyocytes of dogs with HF, indicating an increase in inward current. In the experimental configuration in which K+ currents were blocked, the density of the steady-state Ca2+ current (ICa) was found to decrease in HF cardiomyocytes by approximately 33%. In contrast, the density of the steady-state Na+ current (INa) significantly (P < 0.01) increased in HF cardiomyocytes (0.17 +/- 0.06 pA/pF) compared with normal cells (0.08 +/- 0.02 pA/pF). The relative contribution of INa to the net inward current was greater in HF cardiomyocytes, as evident from the increased ratio of INa/ICa (from 0.22 to 0.68). These observation support a hypothesis that anomalous repolarization of HF cardiomyocytes is due, at least in part, to an increased steady-state inward Na+ current. Topics: Animals; Anti-Arrhythmia Agents; Calcium; Dogs; Heart; Heart Failure; Ion Transport; Lidocaine; Membrane Potentials; Myocardium; Patch-Clamp Techniques; Potassium; Saxitoxin; Sodium; Sodium Channel Blockers; Sodium Channels | 1999 |
Relationship between action potential, contraction-relaxation pattern, and intracellular Ca2+ transient in cardiomyocytes of dogs with chronic heart failure.
Abnormalities of contractile function have been identified in cardiomyocytes isolated from failed human hearts and from hearts of animals with experimentally induced heart failure (HF). The mechanism(s) responsible for these functional abnormalities are not fully understood. In the present study, we examined the relationship between action potential duration, pattern of contraction and relaxation, and associated intracellular Ca2+ transients in single cardiomyocytes isolated from the left ventricle (LV) of dogs (n = 7) with HF produced by multiple sequential intracoronary microembolizations. Comparisons were made with LV cardiomyocytes isolated from normal dogs. Action potentials were measured in isolated LV cardiomyocytes by perforated patch clamp, Ca2+ transients by fluo 3 probe fluorescence, and cardiomyocyte contraction and relaxation by edge movement detector. HF cardiomyocytes exhibited an abnormal pattern of contraction and relaxation characterized by an attenuated initial twitch (spike) followed by a sustained contracture ('dome') of 1 to 8 s in duration and subsequent delayed relaxation. This pattern was more prominent at low stimulation rates (58% at 0.2 Hz, n = 211, 21% at 0.5 Hz, n = 185). Measurements of Ca2+ transients in HF cardiomyocytes at 0.2 Hz manifested a similar spike and dome configuration. The dome phase of both the contraction/relaxation pattern and Ca2+ transients seen in HF cardiomyocytes coincided with a sustained plateau of the action potential. Shortening of the action potential duration by administration of saxitoxin (100 nM) or lidocaine (30 microM) reduced the duration of the dome phase of both the contraction/relaxation profile as well as that of the Ca2+ transient profile. An increase of stimulation rate up to 1 Hz caused shortening of the action potential and disappearance of the spike-dome profile in the majority of HF cardiomyocytes. In HF cardiomyocytes, the action potential and Ca2+ transient duration were not significantly different from those measured in normal cells. However, the contraction-relaxation cycle was significantly longer in HF cells (314 +/- 67 ms, n = 21, vs. 221 +/- 38 ms, n = 46, mean +/- SD), indicating impaired excitation-contraction uncoupling in HF cardiomyocytes. The results show that, in cardiomyocytes isolated from dogs with HF, contractile abnormalities and abnormalities of intracellular Ca2+ transients at low stimulation rates are characterized by a spike-dome configuration. This abnormal Topics: Action Potentials; Animals; Calcium; Cells, Cultured; Disease Models, Animal; Dogs; Electrophysiology; Heart; Heart Failure; Lidocaine; Muscle Contraction; Saxitoxin | 1998 |