saxitoxin has been researched along with Body-Weight* in 5 studies
5 other study(ies) available for saxitoxin and Body-Weight
Article | Year |
---|---|
Exposure of Nile Tilapia (Oreochromis niloticus) Fingerlings to a Saxitoxin-Producing Strain of Raphidiopsis (Cylindrospermopsis) raciborskii (Cyanobacterium) Reduces Growth Performance and Increases Mortality Rate.
Blooms of toxin-producing cyanobacteria have been more frequent and lasting because of the eutrophication of freshwater ecosystems, including those used for aquaculture. The aim of the present study was to investigate the effects of chronic exposure to a saxitoxin-producing strain of Raphidiopsis (Cylindrospermopsis) raciborskii on the performance of Nile tilapia (Oreochromis niloticus) fingerlings over a 60-d period. The fingerlings were cultivated under the following conditions: 1) water without cyanobacterium (WATER), 2) R. raciborskii in ASM-1 culture medium (CYANO), and 3) ASM-1 culture medium without cyanobacterium (ASM). Exposure to the CYANO treatment led to a significant increase in the mortality rate (p < 0.05) and a significant reduction in growth (p < 0.05) compared to fingerlings submitted to the ASM and WATER treatments, in which similar survival and growth were found (p > 0.05). Saxitoxin toxicity was dependent on the weight of the fingerling (p < 0.05), with maximum mortality caused by the ingestion of 13.66 μg saxitoxin equivalent L Topics: Animals; Biomass; Body Weight; Cichlids; Cylindrospermopsis; Environmental Exposure; Feeding Behavior; Male; Saxitoxin; Water Quality | 2020 |
Chronic toxicity study of neosaxitoxin in rats.
Neosaxitoxin (NeoSTX) is a specific reversible blocker of voltage gated sodium channels on excitable cells. In the last decade, it has been tested in a number of interesting clinical trials, however there is still little information available on mammalian toxicity. Rats were treated for 12 weeks with doses of 1, 3 or 6 μg/kg of subcutaneous NeoSTX. At weeks 12 and 17, animals were sacrificed and blood samples collected for hematological and biochemical analysis. Organs were harvested for weight determination and histopathological assessments. The lowest acute toxicity via the intraperitoneal (ip) route was (30.35 μg/kg) and there was no significant difference between intramuscular and subcutaneous routes (11.4 and 12.41 μg/kg). The NeoSTX adiministration did not produce lethality at week 12 and after five weeks of suspension. NeoSTX 6 μg/kg ip produced reductions (p < 0.05) in body weight and food intake, and increased blood level of total and direct bilirubin, GGT and SGOT at week 12; all of these were reversed in the recovery period. NeoSTX 1 and 3 μg/kg ip did not show significant changes with the control group. Histopathological presentations were normal in all groups. This study revealed that NeoSTX is safe in vivo, giving a reliable security margin for its use like a local anesthetic. Topics: Animals; Blood Cell Count; Body Weight; Dose-Response Relationship, Drug; Drinking; Eating; Male; Organ Size; Rats; Rats, Sprague-Dawley; Saxitoxin; Sodium Channel Blockers; Water-Electrolyte Balance | 2014 |
Toxic potential of five freshwater Phormidium species (Cyanoprokaryota).
Among the Cyanoprokaryota (blue-green algae), the genus Phormidium has thus far rarely been studied with respect to toxin production and potentially resulting human and environmental health effects. We here show that five previously unexplored freshwater species of this genus (Ph. bijugatum, Ph. molle, Ph. papyraceum, Ph. uncinatum, Ph. autumnale) are indeed capable of producing bioactive compounds. Phormidium extracts caused weight loss as well as neuro/hepatotoxic symptoms in mice, and in the case of Ph. bijugatum even death. Very low levels of saxitoxins and microcystins, as confirmed by ELISA, were insufficient to explain this toxicity and the differing toxic potencies of the Phormidium species. Qualitative HPLC analyses confirmed different substance patterns and in the future could aid in the separation of fractions for more detailed substance characterisation. The results in vivo were confirmed in vitro using cells of human, mouse and fish. The fish cells responded least sensitive but proved useful in studying the temperature dependence of the toxicity by the Phormidium samples. Further, the human cells were more sensitive than the mouse cells thus suggesting that the former may be a more appropriate choice for studying the impact of Phormidium to man. Among the human cells, two cancer cell lines were more responsive to one of the samples than a normal cell line, thereby indicating a potential anti-tumour activity. Thus, the five freshwater Phormidium species should be considered in environmental risk assessment but as well, as a source of therapeutic agents. Topics: Animals; Bacterial Toxins; Body Weight; Cell Survival; Cells, Cultured; Chromatography, High Pressure Liquid; Cyanobacteria; Enzyme-Linked Immunosorbent Assay; Fishes; Fluorescent Dyes; Formazans; Humans; Liver; Male; Mice; Microcystins; Peptides, Cyclic; Saxitoxin; Species Specificity; Statistics, Nonparametric; Tetrazolium Salts | 2005 |
Na+ channel and acetylcholine receptor changes in muscle at sites distant from burns do not simulate denervation.
Muscle weakness and aberrant responses to neuromuscular relaxants after burn injury are associated with upregulation of acetylcholine receptors (AChRs). Typically, these functional, pharmacological, and biochemical changes occur after denervation, in which transcriptionally mediated qualitative changes in AChRs and Na+ channels and of myogenic regulatory proteins MyoD and myogenin also occur. This study in rats, by an examination of changes in the above-enumerated proteins or their transcripts in the gastrocnemius muscle distant from the burn, verifies whether a denervation-like state exists after burns. Scatchard analysis of [3H]saxitoxin binding revealed no changes in the affinity (K(d)) and total number (B(max)) of Na+ channels between control and burn-injured animals at both 7 and 14 days after injury. The mRNA levels of the immature proteins, SkM2 of the Na+ channels and the gamma-subunits of AChRs, the increase of which is pathognomic of denervation, were assessed by Northern analysis and were unchanged. The transcripts of mature Na+ channels, SkM1, were significantly increased at day 14 after the burn (1.24 +/- 0.10 in burn-injured vs. 1.06 +/- 0.12 in sham animals, arbitrary units, P = 0.006). Although MyoD levels were increased in burn-injured animals at 14 days (0.21 +/- 0.02 vs. 0.15 +/- 0.07 arbitrary units, P = 0.05), myogenin levels were unaltered. The absence of changes in AChR transcripts, including alpha-, delta-, and gamma-subunits, indicates that the upregulation of AChR in burns is not transcriptionally mediated. The unaltered levels of transcripts of myogenin, SkM2 of Na+ channels and gamma-subunit of AChR, confirm that there is no denervation-like prejunctional (nerve-related) component to explain the muscle weakness or the upregulation of AChRs at sites distant from burns. Topics: Animals; Blotting, Northern; Body Weight; Burns; Male; Muscle Denervation; Muscle Weakness; Muscle, Skeletal; Rats; Rats, Sprague-Dawley; Receptors, Cholinergic; RNA; Saxitoxin; Sodium Channels; Up-Regulation | 1997 |
Neural regulation of [3H]saxitoxin binding site numbers in rat neonatal muscle.
1. Neural regulation of the density of sodium (Na+) channels in rat muscle was studied by measuring specific binding of tritiated saxitoxin ([3H]STX) to muscles from rat hindlimbs during normal development and in rats in which neuromuscular function was interrupted by sciatic nerve section or neuromuscular blockade with botulinum toxin (BoTX). 2. The normal developmental increase in [3H]STX binding site numbers followed a simple exponential with a time constant of 12 days. The most rapid incorporation of channels coincided with the onset of accelerated muscle growth and increased neuromuscular activity at 2 weeks of age. 3. Elimination of neuromuscular activity retarded muscle growth and inhibited the normal incorporation of Na+ channels into neonatal muscle. Muscles denervation was more effective than BoTX paralysis: denervation at 2 weeks of age prevented the normal 3-fold increase in the binding site density between 2 and 3 weeks of age while age-matched BoTX-treated muscles incorporated an average of 66% of the normal Na+ channel incorporation. 4. Denervation and BoTX treatment were equally effective in reducing the numbers of [3H]STX binding sites in adult muscle. A reduction of 30% in binding sites brought the numbers to levels which corresponded with levels normally seen in muscles at 3 weeks of neonatal development. 5. It was concluded that the neural influence on incorporation of Na+ channels into membranes of neonatal muscle is, at least in part, mediated by neuromuscular activity. Topics: Animals; Animals, Newborn; Body Weight; Botulinum Toxins; Hindlimb; Muscle Denervation; Muscles; Organ Size; Rats; Saxitoxin; Sodium Channels | 1988 |