sarizotan and Disease-Models--Animal

sarizotan has been researched along with Disease-Models--Animal* in 6 studies

Other Studies

6 other study(ies) available for sarizotan and Disease-Models--Animal

ArticleYear
Effects of sarizotan in animal models of ADHD: challenging pharmacokinetic-pharmacodynamic relationships.
    Journal of neural transmission (Vienna, Austria : 1996), 2015, Volume: 122, Issue:9

    Sarizotan 1-[(2R)-3,4-dihydro-2H-chromen-2-yl]-N-[[5-(4-fluorophenyl) pyridin-3-yl]methyl] methenamine, showed an in vivo pharmaco-EEG profile resembling that of methylphenidate which is used in attention deficit/hyperactivity disorder (ADHD). In turn, we tested sarizotan against impulsivity in juvenile rats measuring the choice for large delayed vs. a small immediate reward in a T-maze and obtained encouraging results starting at 0.03 mg/kg (plasma levels of ~11 nM). Results from rats treated neonatally with 6-hydroxydopamine (6-OHDA), also supported anti-ADHD activity although starting at 0.3 mg/kg. However, microdialysis studies revealed that free brain concentration of sarizotan at active doses were below its affinity for 5-HT1A receptors, the assumed primary target. In contrast, electrophysiological experiments in mid-brain Raphé serotonergic cells paralleled by plasma sampling showed that there was ~60% inhibition of firing rate—indicating significant activation of 5-HT1A receptors—at a plasma concentration of 76 nM. In line with this, we observed that sarizotan concentrations in brain homogenates were similar to total blood levels but over 500 fold higher than free extracellular fluid (ECF) concentrations as measured using brain microdialysis. These data suggest that sarizotan may have potential anti-ADHD effects at low doses free of the previously reported side-effects. Moreover, in this case a classical pharmacokinetic-pharmacodynamic relationship based on free brain concentrations seems to be less appropriate than target engagement pharmacodynamic readouts.

    Topics: Action Potentials; Animals; Attention Deficit Disorder with Hyperactivity; Brain; Cross-Over Studies; Disease Models, Animal; Impulsive Behavior; Male; Maze Learning; Neurons; Organic Chemicals; Oxidopamine; Psychotropic Drugs; Rats, Inbred F344; Rats, Sprague-Dawley; Rats, Wistar; Receptor, Serotonin, 5-HT1A

2015
Effect of Sarizotan, a 5-HT1a and D2-like receptor agonist, on respiration in three mouse models of Rett syndrome.
    American journal of respiratory cell and molecular biology, 2014, Volume: 50, Issue:6

    Disturbances in respiration are common and debilitating features of Rett syndrome (RTT). A previous study showed that the 5-HT1a receptor agonist (R)-(+)-8-hydroxy-dipropyl-2-aminotetralin hydrobromide (8-OH-DPAT) significantly reduced the incidence of apnea and the irregular breathing pattern in a mouse model of the disorder. 8-OH-DPAT, however, is not available for clinical practice. Sarizotan, a full 5-HT1a agonist and a dopamine D2-like agonist/partial agonist, has been used in clinical trials for the treatment of l-dopa-induced dyskinesia. The purpose of this study was to evaluate the effects of sarizotan on respiration and locomotion in mouse models of RTT. Studies were performed in Bird and Jaenisch strains of methyl-CpG-binding protein 2--deficient heterozygous female and Jaenisch strain Mecp2 null male mice and in knock-in heterozygous female mice of a common nonsense mutation (R168X). Respiratory pattern was determined with body plethysmography, and locomotion was determined with open-field recording. Sarizotan or vehicle was administered 20 minutes before a 30-minute recording of respiratory pattern or motor behavior. In separate studies, a crossover design was used to administer the drug for 7 and for 14 days. Sarizotan reduced the incidence of apnea in all three RTT mouse models to approximately 15% of their pretreatment levels. The irregular breathing pattern was corrected to that of wild-type littermates. When administered for 7 or 14 days, apnea decreased to 25 to 33% of the incidence seen with vehicle. This study indicates that the clinically approved drug sarizotan is an effective treatment for respiratory disorders in mouse models of RTT.

    Topics: Animals; Disease Models, Animal; Female; Locomotion; Male; Methyl-CpG-Binding Protein 2; Mice; Mice, Knockout; Organic Chemicals; Receptor, Serotonin, 5-HT1A; Receptors, Dopamine D2; Respiration; Rett Syndrome; Serotonin 5-HT1 Receptor Agonists

2014
Role of dopamine D3 and serotonin 5-HT 1A receptors in L: -DOPA-induced dyskinesias and effects of sarizotan in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease.
    Journal of neural transmission (Vienna, Austria : 1996), 2011, Volume: 118, Issue:12

    Sarizotan, a 5-HT(1A) agonist with additional affinity for D(3) and D(4) receptors, has been demonstrated to have anti-dyskinetic effects. The mechanism by which these effects occur is not clear. Using unilateral 6-hydroxydopamine-lesioned rats that received chronic intraperitoneal (ip) administration of L: -3,4-dihydroxyphenylalanine (L: -DOPA) we investigated the involvement of D(3) and 5-HT(1A) receptors in the effects of sarizotan on contraversive circling and abnormal involuntary movements (AIMs). Before sensitization by chronic L: -DOPA treatment (12.5 with 3.25 mg/kg benserazide ip, twice daily for 21 days), no effect of the selective D(3) agonist, PD128907 (1 or 3 mg/kg ip), or the selective D(3) antagonist, GR103691 (0.5 or 1.5 mg/kg ip), was observed. Treatment with sarizotan (1 or 5 mg/kg ip) dose-dependently inhibited the L: -DOPA-induced contraversive turning and AIMs. In co-treatment with the 5-HT(1A) antagonist, WAY100635 (1 mg/kg ip), sarizotan failed to affect this behaviour, confirming the prominent 5-HT(1A) receptor-mediated mechanism of action. In the presence of PD128907 (3 mg/kg ip), the effects of sarizotan on contraversive turning, locomotive dyskinesia and axial dystonia, but not on orolingual and forelimb dyskinesia, were blocked. On its own, PD128907 had no effect on the behavioural effects of L: -DOPA except that it tended to reduce orolingual and forelimb dyskinesia. GR103691 had no effect on its own or in combination with sarizotan. These data identify an involvement of D(3) receptors in the action of sarizotan on some, but not all L: -DOPA-induced motor side effects. This selective involvement is in contrast to the more general involvement of 5-HT(1A) receptors in the anti-dyskinetic effects of sarizotan.

    Topics: Analysis of Variance; Animals; Antiparkinson Agents; Disease Models, Animal; Dopamine Agents; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Interactions; Dyskinesia, Drug-Induced; Levodopa; Male; Organic Chemicals; Oxidopamine; Parkinsonian Disorders; Rats; Rats, Sprague-Dawley; Receptor, Serotonin, 5-HT1A; Receptors, Dopamine D3; Serotonin 5-HT1 Receptor Agonists; Time Factors

2011
Antidepressant-like properties of sarizotan in experimental Parkinsonism.
    Psychopharmacology, 2011, Volume: 218, Issue:4

    Depression and anxiety are common symptoms in Parkinson's disease for which there are no optimal treatments. Sarizotan, an agonist at serotonin receptors and partial agonist at dopamine D₂-like receptors, has shown antidyskinetic effects in Parkinson's disease. Based on its pharmacological profile, we hypothesized that sarizotan could also have antidepressant-like properties.. Examine effects of sarizotan on behavioral and histological measures known to be regulated by established antidepressants in normal and unilaterally 6-hydroxydopamine-lesioned rats.. Sarizotan was found to significantly reduce immobility in the modified forced swim test, a measure of antidepressant-like activity, but had no effects on thigmotaxis or corner time, measures of anxiety-like behavior, in the unilaterally 6-hydroxydopamine-lesioned rats. At the same dose, sarizotan counteracted L: -DOPA/benserazide-induced supersentitized rotational behavior and dyskinesias without significantly affecting L: -DOPA/benserazide-induced locomotion. At the histological level, sarizotan alone or in combination with L: -DOPA/benserazide stimulated cell proliferation, measured by bromodeoxyuridine incorporation or Ki-67 staining, both in the subgranular zone of the dentate gyrus and in the subventricular zone of the striatum in the 6-hydroxydopamine-lesioned hemisphere. Likewise, combined sarizotan and L: -DOPA/benserazide treatment stimulated doublecortin levels in the subgranular zone of the dentate gyrus.. These significant effects of sarizotan in the modified forced swim test and on cell proliferation are reminiscent of those found after various antidepressant therapies. These data suggest that sarizotan may have some antidepressant-like and restorative properties in Parkinsonism.

    Topics: Animals; Antidepressive Agents; Antiparkinson Agents; Behavior, Animal; Benserazide; Cell Proliferation; Dentate Gyrus; Depression; Disease Models, Animal; Doublecortin Protein; Drug Combinations; Levodopa; Locomotion; Male; Organic Chemicals; Parkinsonian Disorders; Rats; Rats, Sprague-Dawley; Swimming

2011
Low doses of sarizotan reduce dyskinesias and maintain antiparkinsonian efficacy of L-Dopa in parkinsonian monkeys.
    Parkinsonism & related disorders, 2009, Volume: 15, Issue:6

    Dyskinesia is an important complication of treatment in Parkinson's disease (PD). Sarizotan, a 5-HT(1A) agonist with high affinity for D3 and D4 receptors was investigated on L-Dopa-induced dyskinesia (LID) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of PD. Five MPTP female cynomolgus monkeys (Macaca fascicularis) with a moderate to severe parkinsonian syndrome and LID were used. Sarizotan 0.2, 1, and 2 mg/kg administered alone did not worsen parkinsonian symptoms; there were no effect on locomotor counts or on normal behavior of the monkeys. Sarizotan 0.2, 1, and 2 mg/kg administered 30 min before a fixed dose of L-Dopa (25-30 mg/kg s.c.) + benserazide (50 mg) did not affect the antiparkinsonian response to L-Dopa. However, mean dyskinetic scores were significantly reduced with sarizotan 1 and 2 mg/kg but not at 0.2 mg/kg. Higher doses of sarizotan (4 and 8 mg/kg, administered immediately before L-Dopa) reduced L-Dopa-induced locomotor response in all monkeys. A pharmacokinetic investigation in these monkeys showed a dose-dependent increase in mean plasma sarizotan concentrations with similar mean plasma concentrations for sarizotan 1 mg/kg alone or with L-Dopa, indicating a lack of sarizotan/L-Dopa interaction. The time course of plasma sarizotan concentrations was associated with time of maximal reduction of dyskinesias. When administered daily for two weeks in combination with L-Dopa in the same MPTP monkeys, sarizotan 1 mg/kg had a sustained antidyskinetic effect while maintaining the antiparkinsonian and locomotor effect of L-Dopa. This detailed sarizotan investigation in MPTP monkeys supports the antidyskinetic activity of this drug and for 5-HT(1A) agonists.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Antiparkinson Agents; Behavior, Animal; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Dyskinesia, Drug-Induced; Female; Levodopa; Macaca fascicularis; Organic Chemicals; Ovariectomy; Parkinsonian Disorders; Serotonin Receptor Agonists

2009
The effect of chronic administration of sarizotan, 5-HT1A agonist/D3/D4 ligand, on haloperidol-induced repetitive jaw movements in rat model of tardive dyskinesia.
    Progress in neuro-psychopharmacology & biological psychiatry, 2006, Volume: 30, Issue:2

    Dyskinesia is the most troublesome side effect in long-term treatment of both Parkinson's disease (PD) and schizophrenia. The 5-HT1A agonist and D3/D4 ligand sarizotan [Bartoszyk, G.D., van Amsterdam, C., Greiner, H.E., Rautenberg, W., Russ, H., Seyfried, C.A., 2004. Sarizotan, a serotonin 5-HT1A receptor agonist and dopamine receptor ligand. 1. Neurochemical profile. J. Neural Transm. 111, 113-126.] is in clinical development for the treatment of PD-associated dyskinesia. Because 5-HT1A agonists are known to counteract antipsychotic-induced motor side effects, sarizotan was investigated for its effects in two rat models of tardive dyskinesia (TD). The acute administration of sarizotan (0.17-13.5 mg/kg i.p.) reduced episodes of SKF 38393-induced repetitive jaw movements (RJM) in rats with a maximal effect at 1.5 mg/kg. In a chronic study, sarizotan (0.04-9 mg/kg/day), administered in the drinking water for 7 weeks during withdrawal from chronic haloperidol treatment (1.5 mg/kg/day), dose-dependently reversed haloperidol-induced RJM, significant at the doses of 1.5 and 9 mg/kg. Agonism at 5-HT1A receptors may be mediating the inhibitory effect of sarizotan on RJM in rat models of tardive dyskinesia.

    Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Analysis of Variance; Animals; Behavior, Animal; Disease Models, Animal; Dopamine Agonists; Dopamine Antagonists; Dose-Response Relationship, Drug; Drinking Behavior; Drug Administration Schedule; Drug Interactions; Dyskinesia, Drug-Induced; Haloperidol; Jaw; Male; Motor Activity; Movement; Organic Chemicals; Psychomotor Performance; Rats; Rats, Sprague-Dawley; Serotonin Receptor Agonists; Time Factors

2006