saralasin and Pancreatitis

saralasin has been researched along with Pancreatitis* in 2 studies

Other Studies

2 other study(ies) available for saralasin and Pancreatitis

ArticleYear
Differential effects of saralasin and ramiprilat, the inhibitors of renin-angiotensin system, on cerulein-induced acute pancreatitis.
    Regulatory peptides, 2003, Mar-28, Volume: 111, Issue:1-3

    Acute pancreatitis is an inflammatory disease characterized by pancreatic tissue edema, acinar cell necrosis, hemorrhage and inflammation of the damaged gland. It is believed that acinar cell injury is initiated by the activation of digestive zymogens inside the acinar cells, leading finally to the autodigestion of the pancreas. Previous study in our laboratory demonstrated that cerulein-induced acute pancreatitis was associated with an up-regulation of local renin-angiotensin system (RAS) in rat pancreas. Therefore, the utilization of RAS inhibitors may provide a novel and alternative treatment for acute pancreatitis. By means of a rat model of cerulein-induced acute pancreatitis, results from the present study showed that an intravenous injection of saralasin, an antagonist for angiotensin II receptors, at a dose of 40 microg/kg 30 min before the induction of acute pancreatitis significantly attenuated pancreatic edema. Results from the biochemical measurements showed that pretreatment with saralasin at a dose of 20 microg/kg markedly reduced pancreatic injury, as evidenced by the decreased activities of alpha-amylase and lipase in plasma. However, the same recipe of ramiprilat, a specific inhibitor for angiotensin-converting enzyme, at a dose of 20 microg/kg did not provide any protective effect against acute pancreatitis. On the contrary, pretreatment with ramiprilat at a dose 40 microg/kg enhanced cerulein-induced pancreatic injury. Results from histopathological analysis of these RAS inhibitors further confirmed with those results as obtained from biochemical analysis. These data indicate that administration of saralasin but not ramiprilat could be protective against acute pancreatitis and that activation of pancreatic RAS in acute pancreatitis may play a role in pancreatic tissue injury.

    Topics: Acute Disease; alpha-Amylases; Angiotensin Receptor Antagonists; Animals; Ceruletide; Disease Models, Animal; Edema; Injections, Intravenous; Lipase; Necrosis; Pancreatitis; Ramipril; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System; Saralasin

2003
Saralasin, a nonspecific angiotensin II receptor antagonist, attenuates oxidative stress and tissue injury in cerulein-induced acute pancreatitis.
    Pancreas, 2003, Volume: 26, Issue:3

    Free radical-mediated pancreatic injury is believed to play a key role in the pathogenesis of acute pancreatitis. Most of these studies have focused on the effects of antioxidant enzymes and free radical scavengers on improving the pancreatic injury. Recent findings showed that cerulein-induced acute pancreatitis was associated with an upregulation of a local pancreatic renin-angiotensin system in the pancreas. In the current study we hypothesized that inhibition of this renin-angiotensin system by saralasin, a nonspecific antagonist for angiotensin II receptor, could attenuate the severity of cerulein-induced pancreatitis.. The effects of saralasin on oxidative stress and tissue injury in cerulein-induced pancreatitis were assessed by histopathologic analysis and on the basis of biochemical changes of plasma alpha-amylase level, pancreatic glutathione status, oxidative modification of protein, and lipid peroxidation.. Data from the biochemical analysis showed that intravenous injections of saralasin at doses of 10 microg/kg to 50 microg/kg 30 minutes before the induction of acute pancreatitis significantly reduced pancreatic injury, as indicated by a decrease in plasma alpha-amylase activity in comparison with the cerulein-treated control. The effect of saralasin was further manifested by significant suppressions of glutathione depletion, oxidative modification of proteins, and lipid peroxidation in cerulein-treated rat pancreas. Histopathologic examination findings were in agreement with the biochemical data.. These data suggest that prophylactic administration of saralasin can ameliorate the oxidative stress and tissue injury in cerulein-induced pancreatitis. Such a protective effect may provide new insight into the potential value of angiotensin II receptor antagonists in the clinical therapy for acute pancreatitis.

    Topics: Acute Disease; alpha-Amylases; Angiotensin Receptor Antagonists; Animals; Ceruletide; Glutathione; Lipid Peroxidation; Oxidative Stress; Pancreas; Pancreatitis; Rats; Rats, Sprague-Dawley; Saralasin

2003