sar405 has been researched along with Carcinoma--Squamous-Cell* in 2 studies
2 other study(ies) available for sar405 and Carcinoma--Squamous-Cell
Article | Year |
---|---|
Autophagy is deregulated in cancer-associated fibroblasts from oral cancer and is stimulated during the induction of fibroblast senescence by TGF-β1.
Many of the characteristics ascribed to cancer-associated fibroblasts (CAFs) are shared by activated, autophagic and senescent fibroblasts. Whilst most oral squamous cell carcinomas (OSCCs) are genetically unstable (GU-OSCC), genetically stable variants (GS-OSCC) have been described and, notably, CAF activation (myofibroblast differentiation) and senescence are characteristics particularly associated with GU-OSCCs. However, it is not known whether autophagy is disrupted in these cells or whether autophagy regulates the development of the myofibroblast and senescent phenotypes. In this study, we show that senescent CAFs from GU-OSCCs contained more autophagosomes than normal human oral fibroblasts (NHOFs) and CAFs from GS-OSCCs possibly due to autophagic impairment. Further, we show that deregulation of autophagy in normal fibroblasts, either by inhibition with autophagy inhibitor, SAR405, or activation with TGF-β1, induced fibroblast activation and senescence: In response to TGF-β1, autophagy was induced prior to the development of the activated and senescent phenotypes. Lastly, we show that both SAR405- and TGF-β1-treated NHOFs enhance OSCC cell migration but only TGF-β1-treated cells increase OSCC invasion through Matrigel, indicating that TGF-β1 has additional effects that are independent of fibroblast activation/senescence. These results suggest a functional role for autophagy in the development of myofibroblast and CAF phenotypes. Topics: Autophagy; Carcinoma, Squamous Cell; Cell Differentiation; Cell Movement; Cellular Senescence; Fibroblasts; Humans; Mouth Neoplasms; Myofibroblasts; Neoplasm Invasiveness; Pyridines; Pyrimidinones; Transforming Growth Factor beta1 | 2021 |
Secretory Autophagy in Cancer-Associated Fibroblasts Promotes Head and Neck Cancer Progression and Offers a Novel Therapeutic Target.
Despite therapeutic advancements, there has been little change in the survival of patients with head and neck squamous cell carcinoma (HNSCC). Recent results suggest that cancer-associated fibroblasts (CAF) drive progression of this disease. Here, we report that autophagy is upregulated in HNSCC-associated CAFs, where it is responsible for key pathogenic contributions in this disease. Autophagy is fundamentally involved in cell degradation, but there is emerging evidence that suggests it is also important for cellular secretion. Thus, we hypothesized that autophagy-dependent secretion of tumor-promoting factors by HNSCC-associated CAFs may explain their role in malignant development. In support of this hypothesis, we observed a reduction in CAF-facilitated HNSCC progression after blocking CAF autophagy. Studies of cell growth media conditioned after autophagy blockade revealed levels of secreted IL6, IL8, and other cytokines were modulated by autophagy. Notably, when HNSCC cells were cocultured with normal fibroblasts, they upregulated autophagy through IL6, IL8, and basic fibroblast growth factor. In a mouse xenograft model of HNSCC, pharmacologic inhibition of Vps34, a key mediator of autophagy, enhanced the antitumor efficacy of cisplatin. Our results establish an oncogenic function for secretory autophagy in HNSCC stromal cells that promotes malignant progression. Topics: Animals; Autophagy; Cancer-Associated Fibroblasts; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Movement; Cell Proliferation; Chloroquine; Culture Media, Conditioned; Cytokines; Drug Resistance, Neoplasm; Female; Fibroblast Growth Factor 2; Head and Neck Neoplasms; Humans; Interleukin-6; Interleukin-8; Male; Mice; Mice, SCID; Neoplasm Invasiveness; Pyridines; Pyrimidinones; Squamous Cell Carcinoma of Head and Neck; Xenograft Model Antitumor Assays | 2017 |