saquinavir has been researched along with Breast-Neoplasms* in 3 studies
1 review(s) available for saquinavir and Breast-Neoplasms
Article | Year |
---|---|
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators.
The primary source of failure of cancer therapies is multidrug resistance (MDR), which can be caused by different mechanisms, including the overexpression of ABC transporters in cancer cells. Among the 48 human ABC proteins, the breast cancer resistance protein (BCRP/ABCG2) has been described as a pivotal player in cancer resistance. The use of functional inhibitors and expression modulators is a promising strategy to overcome the MDR caused by ABCG2. Despite the lack of clinical trials using ABCG2 inhibitors, many compounds have already been discovered. This review presents an overview about various ABCG2 inhibitors that have been identified, discussing some chemical aspects and the main experimental methods used to identify and characterize the mechanisms of new inhibitors. In addition, some biological requirements to pursue preclinical tests are described. Finally, we discuss the potential use of ABCG2 inhibitors in cancer stem cells (CSC) for improving the objective response rate and the mechanism of ABCG2 modulators at transcriptional and protein expression levels. Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; Breast Neoplasms; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Female; Humans; Neoplasm Proteins; Neoplastic Stem Cells | 2022 |
2 other study(ies) available for saquinavir and Breast-Neoplasms
Article | Year |
---|---|
Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity.
Saquinavir (SQV) is a US-FDA approved HIV protease inhibitor (HPI) for HIV cure. The purpose of the present investigation was to develop and characterize the anticancer potential of the SQV-loaded folic acid (FA) conjugated PEGylated and non-PEGylated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) (SQV-Fol-PEG-PLGA and SQV-Fol-PLGA) employing PC-3 (human prostate) and MCF-7 (human breast) cancer cell lines.. Developed NPs were characterized by IR, NMR, DSC, XRD, size, charge and further tested for drug loading and cellular uptake properties.. The entrapment efficiency was found to be 56 ± 0.60 and 58 ± 0.80 w/v for SQV-Fol-PEG-PLGA and SQV-PLGA NPs, respectively. The obtained results of SQV-Fol-PEG-PLGA showed enhanced cytotoxicity and cellular uptake and were most preferentially taken up by the cancerous cells via folate receptor-mediated endocytosis (RME) mechanism. At 260 µM concentration, SQV-PLGA NPs and SQV-Fol-PEG-PLGA NPs showed 20%, 20% and 23% cell growth inhibition in PC-3 cells, respectively whereas in MCF-7 cells it was 12%, 15% and 14% cell growth inhibition, respectively.. Developed targeted SQV-Fol-PEG-PLGA NPs were superior anticancer potential as compared to non-targeted SQV-PLGA NPs. Thus, these targeted NPs provide another option for anticancer drug delivery scientists. Topics: Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Drug Carriers; Drug Compounding; Drug Delivery Systems; Endocytosis; Female; Folic Acid; Humans; Lactic Acid; Male; MCF-7 Cells; Nanoparticles; Particle Size; Polyesters; Polyethylene Glycols; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Prostatic Neoplasms; Saquinavir | 2015 |
HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2).
Breast cancer resistance protein (BCRP) is a recently discovered ATP-binding cassette drug transporter. Hence, the full spectrum of therapeutic agents that interact with BCRP remains to be elucidated. Because human immunodeficiency virus protease inhibitors (HPIs) are well known P-glycoprotein (P-gp) substrates, and there is an overlap in substrate specificity between P-gp and BCRP, this study was performed to investigate whether HPIs are substrates and/or inhibitors of BCRP. First, the effect of HPIs on BCRP efflux activity in human embryonic kidney (HEK) cells stably expressing wild-type BCRP (482R) and its two mutants (482T and 482G) was studied by measuring intracellular mitoxantrone fluorescence using flow cytometry. We found that ritonavir, saquinavir, and nelfinavir were effective inhibitors of wild-type BCRP (482R) with IC50 values of 19.5 +/- 0.8 microM, 19.5 +/- 7.6 microM, and 12.5 +/- 4.1 microM, respectively. Ritonavir, saquinavir, and nelfinavir inhibited 482T and 482G with IC50 values that were approximately 2 times greater than that for 482R. Indinavir and amprenavir had no significant inhibition on BCRP activity. Direct efflux of radiolabeled HPIs in HEK cells was measured to determine whether the HPIs are substrates of BCRP. None of the HPIs were found to be transported by BCRP. Together, ritonavir, saquinavir, nelfinavir, indinavir, and amprenavir are not substrates for BCRP. However, ritonavir, saquinavir, and nelfinavir are effective inhibitors of the transporter. These results suggest that BCRP may play an important role in drug-drug interactions involving coadministration of the HPIs with drugs that are substrates of the transporter. Topics: ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Breast Neoplasms; Cells, Cultured; Drug Resistance, Neoplasm; Gene Expression; HIV Protease Inhibitors; Humans; Indinavir; Mitoxantrone; Nelfinavir; Neoplasm Proteins; Ritonavir; Saquinavir; Tritium | 2004 |