sapogenins has been researched along with Alzheimer-Disease* in 2 studies
2 other study(ies) available for sapogenins and Alzheimer-Disease
Article | Year |
---|---|
Cycloastragenol, a Triterpenoid Saponin, Regulates Oxidative Stress, Neurotrophic Dysfunctions, Neuroinflammation and Apoptotic Cell Death in Neurodegenerative Conditions.
Here, we have unveiled the effects of cycloastragenol against Aβ (Amyloid-beta)-induced oxidative stress, neurogenic dysfunction, activated mitogen-activated protein (MAP) kinases, and mitochondrial apoptosis in an Aβ-induced mouse model of Alzheimer's disease (AD). The Aβ-induced mouse model was developed by the stereotaxic injection of amyloid-beta (5 μg/mouse/intracerebroventricular), and cycloastragenol was given at a dose of 20 mg/kg/day/p.o for 6 weeks daily. For the biochemical analysis, we used immunofluorescence and Western blotting. Our findings showed that the injection of Aβ elevated oxidative stress and reduced the expression of neurogenic markers, as shown by the reduced expression of brain-derived neurotrophic factor (BDNF) and the phosphorylation of its specific receptor tropomyosin receptor kinase B (p-TrKB). In addition, there was a marked reduction in the expression of NeuN (neuronal nuclear protein) in the Aβ-injected mice brains (cortex and hippocampus). Interestingly, the expression of Nrf2 (nuclear factor erythroid 2-related factor 2), HO-1 (heme oxygenase-1), p-TrKB, BDNF, and NeuN was markedly enhanced in the Aβ + Cycloastragenol co-treated mice brains. We have also evaluated the expressions of MAP kinases such as phospho c-Jun-N-terminal kinase (p-JNK), p-38, and phospho-extracellular signal-related kinase (ERK1/2) in the experimental groups, which suggested that the expression of p-JNK, p-P-38, and p-Erk were significantly upregulated in the Aβ-injected mice brains; interestingly, these markers were downregulated in the Aβ + Cycloastragenol co-treated mice brains. We also checked the expression of activated microglia and inflammatory cytokines, which showed that cycloastragenol reduced the activated microglia and inflammatory cytokines. Moreover, we evaluated the effects of cycloastragenol against mitochondrial apoptosis and memory dysfunctions in the experimental groups. The findings showed significant regulatory effects against apoptosis and memory dysfunction as revealed by the Morris water maze (MWM) test. Collectively, the findings suggested that cycloastragenol regulates oxidative stress, neurotrophic processes, neuroinflammation, apoptotic cell death, and memory impairment in the mouse model of AD. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Apoptosis; Astrocytes; Brain; Cyclic AMP Response Element-Binding Protein; Cytokines; Disease Models, Animal; DNA-Binding Proteins; Inflammation; Inflammation Mediators; Memory Disorders; Mice, Inbred C57BL; Microglia; Nerve Growth Factors; Nerve Tissue Proteins; Neurodegenerative Diseases; Oxidative Stress; Phosphorylation; Sapogenins; Saponins; Triterpenes | 2021 |
Protopanaxadiol derivative DDPU improves behavior and cognitive deficit in AD mice involving regulation of both ER stress and autophagy.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid Precursor Protein Secretases; Animals; Aspartic Acid Endopeptidases; Autophagy; Cell Line; Cognitive Dysfunction; eIF-2 Kinase; Endoplasmic Reticulum Stress; Eukaryotic Initiation Factor-2; HEK293 Cells; Humans; Male; Mice; Mice, Transgenic; Nesting Behavior; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Primary Cell Culture; Proto-Oncogene Proteins c-akt; Sapogenins; Signal Transduction; Spatial Navigation; TOR Serine-Threonine Kinases | 2018 |