sanshool and Disease-Models--Animal

sanshool has been researched along with Disease-Models--Animal* in 3 studies

Other Studies

3 other study(ies) available for sanshool and Disease-Models--Animal

ArticleYear
Transient receptor potential ankyrin 1 agonists improve intestinal transit in a murine model of postoperative ileus.
    Neurogastroenterology and motility, 2016, Volume: 28, Issue:12

    Stimulation of transient receptor potential ankyrin 1 (TRPA1), which abundantly expressed in enterochromaffin cells (ECC), has been reported to exert apparently contradictory results in in vitro contractility and in vivo gastrointestinal (GI) transit evaluations. The pharmaceutical-grade Japanese traditional medicine daikenchuto (TU-100) has been reported to be beneficial for postoperative ileus (POI) and accelerate GI transit in animals and humans. TU-100 was recently shown to increase intestinal blood flow via stimulation of TRPA1 in the epithelial cells of the small intestine (SI).. The effects of various TRPA1 agonists on motility were examined in a manipulation-induced murine POI model, in vitro culture of SI segments and an ECC model cell line, RIN-14B.. Orally administered TRPA1 agonists, aryl isothiocyanate (AITC) and cinnamaldehyde (CA), TU-100 ingredients, [6]-shogaol (6S) and γ-sanshool (GS), improved SI transit in a POI model. The effects of AITC, 6S and GS but not CA were abrogated in TRPA1-deficient mice. SI segments show periodic peristaltic motor activity whose periodicity disappeared in TRPA1-deficient mice. TU-100 augmented the motility. AITC, CA and 6S increased 5-HT release from isolated SI segments and the effects of all these compounds except for CA were lost in TRPA1-deficient mice. 6S and GS induced a release of 5-HT from RIN-14B cells in a dose- and TRPA1-dependent manner.. Intraluminal TRPA1 stimulation is a potential therapeutic strategy for GI motility disorders. Further investigation is required to determine whether 5-HT and/or ECC are involved in the effect of TRPA1 on motility.

    Topics: Acrolein; Amides; Animals; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Gastrointestinal Transit; Ileus; Male; Mice; Mice, 129 Strain; Mice, Inbred C57BL; Naphthoquinones; Organ Culture Techniques; TRPA1 Cation Channel

2016
Daikenchuto (TU-100) ameliorates colon microvascular dysfunction via endogenous adrenomedullin in Crohn's disease rat model.
    Journal of gastroenterology, 2011, Volume: 46, Issue:10

    Daikenchuto (TU-100), a traditional Japanese medicine, has been reported to up-regulate the adrenomedullin (ADM)/calcitonin gene-related peptide (CGRP) system, which is involved in intestinal vasodilatation. The microvascular dysfunction of the intestine in Crohn's disease (CD), due to down-regulation of the ADM/CGRP system, is etiologically related to the recurrence of CD. Therefore, we investigated the vasodilatory effect of TU-100 in a CD rat model.. Colitis was induced by the rectal instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats. Laser Doppler blood flowmetry was used to measure colonic blood flow. ADM, CGRP, and their receptors in the ischemic colon were measured by reverse transcription polymerase chain reaction (RT-PCR) and enzyme immunoassays. Additionally, we determined whether the intestinal epithelial cell line IEC-6 released ADM in response to TU-100.. TU-100 increased blood flow in ischemic segments of the colon but not in hyperemic segments. Pretreatment with an antibody to ADM abolished the vasodilatory effect of TU-100. CGRP levels and βCGRP mRNA expression were decreased in the ischemic colon, while protein and mRNA levels of ADM were unchanged. Hydroxy α-sanshool, the main constituent of TU-100, was the most active component in improving blood flow. Additionally, both TU-100 and hydroxy α-sanshool enhanced the release of ADM from IEC-6 cells.. In the ischemic colon, endogenous βCGRP, but not ADM, was decreased. Thus, it was concluded that TU-100 ameliorated microvascular dysfunction by the up-regulation of endogenous ADM in the CD rat model. TU-100 may be a possible therapeutic agent for gastrointestinal ischemia-related diseases including CD.

    Topics: Adrenomedullin; Amides; Animals; Calcitonin Gene-Related Peptide; Cell Line; Colitis; Colon; Crohn Disease; Disease Models, Animal; Intestinal Mucosa; Male; Microvessels; Panax; Plant Extracts; Rats; Rats, Sprague-Dawley; RNA, Messenger; Trinitrobenzenesulfonic Acid; Up-Regulation; Vasodilation; Zanthoxylum; Zingiberaceae

2011
The preventive effect of Daikenchuto on postoperative adhesion-induced intestinal obstruction in rats.
    Inflammopharmacology, 2007, Volume: 15, Issue:2

    The present study investigated the effect of Daikenchuto (DKT) on postoperative intestinal adhesion in rats. We evaluated the effects of DKT, constituent medical herbs and active compounds on talc-induced intestinal adhesion in rats and DKT-induced contractions using isolated guinea pig ileum. DKT significantly prevented adhesion formation, and this action was inhibited by pretreatment with atropine or ruthenium red. The constituent medical herbs, Zanthoxylum Fruit and Maltose Syrup Powder significantly prevented adhesion formation. Moreover, hydroxy sanshool (HS) prevented adhesion formation, and this action was inhibited by pretreatment with ruthenium red. In contrast, DKT-induced contractions were inhibited by tetrodotoxin, atropine, and capsazepine. These results suggested that DKT had a preventive action on postoperative adhesive intestinal obstruction, and that this action was mediated by sensory and cholinergic nerves. Furthermore, HS was found to be one of the active compound of DKT, and its action was mediated by sensory nerves.

    Topics: Amides; Animals; Disease Models, Animal; Fruit; Guinea Pigs; Ileum; Intestinal Obstruction; Maltose; Medicine, East Asian Traditional; Muscle Contraction; Nervous System Physiological Phenomena; Panax; Plant Extracts; Postoperative Complications; Rats; Talc; Tissue Adhesions; Zanthoxylum; Zingiberaceae

2007