salvianolic-acid-B and Hyperlipidemias

salvianolic-acid-B has been researched along with Hyperlipidemias* in 4 studies

Reviews

1 review(s) available for salvianolic-acid-B and Hyperlipidemias

ArticleYear
Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use.
    Journal of clinical pharmacology, 2005, Volume: 45, Issue:12

    Danshen, the dried root of Salvia miltiorrhiza, has been widely used in China and, to a lesser extent, in Japan, the United States, and other European countries for the treatment of cardiovascular and cerebrovascular diseases. In China, the specific clinical use is angina pectoris, hyperlipidemia, and acute ischemic stroke. The current review covers its traditional uses, chemical constituents, pharmacological activities, pharmacokinetics, clinical applications, and potential herb-drug interactions based on information obtained in both the English and Chinese literature. Although numerous clinical trials have demonstrated that certain Danshen products in China are effective and safe for the treatment of cardiovascular diseases, most of these lack sufficient quality. Therefore, large randomized clinical trials and further scientific research to determine its mechanism of actions will be necessary to ensure the safety, effectiveness, and better understanding of its action.

    Topics: Abietanes; Angina Pectoris; Animals; Benzofurans; Drugs, Chinese Herbal; Fibrinolytic Agents; Herb-Drug Interactions; Humans; Hyperlipidemias; Lactates; Phenanthrenes; Phenanthrolines; Plant Extracts; Randomized Controlled Trials as Topic; Salvia miltiorrhiza; Stroke

2005

Other Studies

3 other study(ies) available for salvianolic-acid-B and Hyperlipidemias

ArticleYear
Preventative, but not post-stroke, inhibition of CD36 attenuates brain swelling in hyperlipidemic stroke.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2020, Volume: 40, Issue:4

    The lack of inclusion of comorbidities in animal models of stroke may underlie the limited development of therapy in stroke. Previous studies in mice deficient of CD36, an immune receptor, indicated its contribution to stroke-induced inflammation and injury in hyperlipidemic conditions. The current study, therefore, tested whether pharmacological inhibition of CD36 provides neuroprotection in hyperlipidemic stroke. The hyperlipidemic mice subjected to stroke showed an exacerbation of infarct size and profound brain swelling. However, post-stroke treatment with CD36 inhibitors did not reduce, and in some cases worsened, acute stroke outcome, suggesting potential benefits of elevated CD36 in the post-stroke brain in a hyperlipidemic condition. On the other hand, chronic treatment of a CD36 inhibitor prior to stroke significantly reduced stroke-induced brain swelling. There was a trend toward infarct reduction, although it did not reach statistical significance. The observed benefit of preventative CD36 inhibition is in line with previously reported smaller infarct volume and swelling in CD36 KO mice. Thus, the current findings suggest that insights gained from the genetic models should be carefully considered before the implementation of pharmacological interventions, as a potential therapeutic strategy may depend on preventative treatment or a post-stroke acute treatment paradigm.

    Topics: Animals; Apolipoproteins E; Benzofurans; Brain Edema; CD36 Antigens; Disease Models, Animal; Drug Administration Schedule; Drugs, Chinese Herbal; Hyperlipidemias; Inflammation; Male; Mice, Inbred C57BL; Mice, Knockout; Protective Agents; Stroke

2020
Salvianolic acid B inhibited PPARγ expression and attenuated weight gain in mice with high-fat diet-induced obesity.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2014, Volume: 34, Issue:2

    Obesity contributes to the development of cardiometabolic disorders such as type 2 diabetes, fatty liver disease and cardiovascular disease. Salvianolic acid B (Sal B) is a molecule derived from the root of Salvia miltiorrhiza (Danshen), which is a traditional Chinese medicine that is widely used to treat cardiovascular diseases. However, the role of Sal B in obesity and obesity-related metabolic disorders is unknown. In this study, we aimed to investigate the effects of Sal B on high-fat diet-induced obesity and determine the possible mechanisms involved.. Male C57BL/6J mice fed a high-fat diet for 12 weeks received a supplement of Sal B (100 mg/kg/day) by gavage for a further 8 weeks. These mice were compared to control mice fed an un-supplemented high-fat diet. 3T3-L1 preadipocytes were used in vitro studies.. Sal B administration significantly decreased body weight, white adipose tissue weight, adipocyte size and lipid (triglyceride and total cholesterol) levels in obese mice. Eight weeks of Sal B administration also improved the intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT) scores in high-fat diet-induced obese mice. In 3T3-L1 preadipocytes that were cultured in vitro and induced to differentiate, Sal B reduced the accumulation of lipid droplets and lipid content in a dose-dependent manner. Immunoblotting indicated that Sal B decreased peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) expression but increased the expression of GATA binding protein 2 and 3 (GATA 2, GATA 3) both in vivo and in vitro.. Our data suggest that Sal B may reduce obesity and obesity-related metabolic disorders by suppressing adipogenesis. The effects of Sal B in adipose tissue may be related to its action on PPARγ, C/EBPα, GATA-2 and GATA-3.

    Topics: 3T3-L1 Cells; Animals; Benzofurans; Diet, High-Fat; Hyperlipidemias; Male; Mice; Mice, Inbred C57BL; Obesity; PPAR gamma; Weight Gain

2014
Salvianolic acid B inhibits macrophage uptake of modified low density lipoprotein (mLDL) in a scavenger receptor CD36-dependent manner.
    Atherosclerosis, 2012, Volume: 223, Issue:1

    CD36, a class B scavenger receptor, has been implicated in the pathogenesis of a host of vascular inflammatory diseases. Through a high-throughput screening (HTS) assay for CD36 antagonist, we previously identified salvianolic acid B (SAB), a hydrophilic component derived from the herb Danshen, as a potential candidate. Danshen, the dried roots of Salvia miltiorrhiza, has been widely used in China for the prevention and treatment of atherosclerosis-related disorders. Previous studies showed that SAB acted as an anti-oxidant by preventing lipid peroxidation and oxidized LDL (oxLDL) formation. The present study was to investigate the specificity and efficacy of SAB in the inhibition of CD36-mediated lipid uptake. SAB reduced modified LDL (mLDL) uptake in a dose-dependent manner in phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 and RAW 264.7 cells. In the CD36 silenced THP-1 cells, SAB had no effect in reducing mLDL uptake, whereas its overexpression in CHO cells reinstates the effect, indicating a specific involvement of SAB in antagonizing the CD36's function. Surface plasmon resonance (SPR) analysis revealed a direct binding of SAB to CD36 with a high affinity (K(D) = 3.74 μM), confirming physical interactions of SAB with the receptor. Additionally, SAB reduced oxLDL-induced CD36 gene expression in the cultured cell lines and primary macrophages. In ApoE KO mice fed a high fat diet, SAB reduced CD36 gene expression and lipid uptake in macrophages, showing its ability to antagonize CD36 pathways in vivo. These results demonstrate that SAB is an effective CD36 antagonist and suggest SAB as a potential anti-atherosclerotic agent.

    Topics: Animals; Apolipoproteins E; Atherosclerosis; Benzofurans; Biological Transport; CD36 Antigens; Cell Line, Tumor; CHO Cells; Cricetinae; Cricetulus; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Hyperlipidemias; Hypolipidemic Agents; Lipoproteins, LDL; Macrophages; Mice; Mice, Inbred C57BL; Mice, Knockout; Receptors, LDL; RNA Interference; Surface Plasmon Resonance; Tetradecanoylphorbol Acetate; Time Factors; Transfection

2012