salvianolic-acid-B and Cardiomegaly

salvianolic-acid-B has been researched along with Cardiomegaly* in 3 studies

Other Studies

3 other study(ies) available for salvianolic-acid-B and Cardiomegaly

ArticleYear
Salvianolic Acid B Alleviates Myocardial Ischemia Injury by Suppressing NLRP3 Inflammasome Activation via SIRT1-AMPK-PGC-1α Signaling Pathway.
    Cardiovascular toxicology, 2022, Volume: 22, Issue:9

    Salvianolic acid B (SalB) has been extensively investigated in our laboratory for myocardial ischemia (MI) disease. This study mainly aimed to illustrate the relationship between SIRT1 and the therapeutic effect of SalB on MI in rats and hypoxia damage in H9c2 cells. Furthermore, whether the antagonism of NLRP3 by SalB in the injuries mentioned above is related to SIRT1-AMPK-PGC-1α pathway-mediated mitochondrial biogenesis was further investigated. In vivo, 24 h after MI surgery, we found that SalB effectively reduced ST-segment elevation, myocardial infarct size enlargement, cardiac injury markers, myocardial structural abnormalities, and myocardial apoptotic cells in MI injury rats. In vitro, after 4 h of hypoxia exposure, SalB alleviated cell injury, inhibited the production of ROS and IL-1β, and prevented the loss of mitochondrial membrane potential (MMP). Besides, SalB downregulated the critical components of the NLRP3 inflammasome and upregulated the SIRT1-AMPK-PGC-1α signaling pathway-related molecules in myocardial tissues and H9c2 cells. However, all the above protective effects of SalB on MI could be offset by EX527. Taken together, our findings indicated that SalB could attenuate MI injury by targeting NLRP3, which is at least partially dependent on the SIRT1/AMPK/PGC-1α signaling pathway.

    Topics: AMP-Activated Protein Kinases; Animals; Benzofurans; Cardiomegaly; Hypoxia; Inflammasomes; Myocardial Ischemia; NLR Family, Pyrin Domain-Containing 3 Protein; Rats; Rats, Sprague-Dawley; Signal Transduction; Sirtuin 1

2022
Salvianolic acid B protects cardiomyocytes from angiotensin II-induced hypertrophy via inhibition of PARP-1.
    Biochemical and biophysical research communications, 2014, Feb-14, Volume: 444, Issue:3

    Salvianolic acid B (SalB), one of the major bioactive components in Salviamiltiorrhiza, has plenty of cardioprotective effects. The present study was designed to investigate the effect of SalB on angiotensin II (AngII)-induced hypertrophy in neonatal rat cardiomyocytes, and to find out whether or not this effect is attributed to inhibition of poly (ADP-ribose) polymerase-1 (PARP-1), which plays a key role in cardiac hypertrophy. Our results showed that SalB prevented the cardiomyocytes from AngII-induced hypertrophy, associated with attenuation of the mRNA expressions of atrial natriuretic factor and brain natriuretic peptide, and reduction in the cell surface area. SalB inhibited the activity of PARP-1. The inhibitory effect was comparable to that of the PARP-1 inhibitor 3-Aminobenzamide (3-AB). In addition, SalB reversed the depletion of cellular NAD(+) induced by AngII. Moreover, overexpression of PARP-1 attenuated the anti-hypertrophic effect of SalB. These observations suggested that SalB prevented the cardiomyocytes from AngII-induced hypertrophy, at least partially through inhibition of PARP-1. Moreover, SalB attenuated the generation of oxidative stress via suppression of NADPH oxidase 2 and 4, which might probably contribute to the inhibition of PARP-1. These present findings may shed new light on the understanding of the cardioprotective effect of SalB.

    Topics: Angiotensin II; Animals; Benzofurans; Cardiomegaly; Cells, Cultured; Myocytes, Cardiac; NAD; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Real-Time Polymerase Chain Reaction

2014
Comparison of cardioprotective effects using salvianolic acid B and benazepril for the treatment of chronic myocardial infarction in rats.
    Naunyn-Schmiedeberg's archives of pharmacology, 2008, Volume: 378, Issue:3

    The aim of this study was to compare the cardioprotective effects of salvianolic acid B (Sal B) and the angiotension-converting enzyme inhibitor, benazepril, in rats with chronic myocardial infarction (MI) that resulted from a coronary artery ligation for 4 weeks. The rats were divided into four groups: those undergoing a sham operation; a MI group; a MI+SalB group (100 mg/kg by a gavage, once a day for 4 weeks); a MI+benazepril group (10 mg/kg by a gavage, once a day for 4 weeks). The following parameters were measured: echocardiographic, hemodynamic and hemorheological changes, angiogenesis, infarct size and cardiac remodeling and the messenger ribonucleic acid (mRNA) of vascular endothelium growth factor (VEGF). Rats treated with SalB or benazepril manifested the following: (1) marked improvements in echocardiographic, hemodynamic and hemorheological parameters; (2) significant reduction of infarct size; (3) significantly attenuated heart, kidney and lung hypertrophies, left ventricular (LV) dilatation and fibrosis. The unique effects of SalB were angiogenesis and augmented VEGF expression in the border and remote noninfarcted left ventricular area. These results suggest that both SalB and benazepril exerted beneficial cardioprotective effects in our experimental system, but that the modality of Sal B was different from that of benazepril. The additional beneficial effects of Sal B relative to benazpril, augmenting VEGF expression and promoting angiogenesis, may result in improved myocardial microcirculation.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Antioxidants; Benzazepines; Benzofurans; Blood Viscosity; Cardiomegaly; Chronic Disease; Collagen; Electrocardiography; Hemodynamics; Immunohistochemistry; Male; Myocardial Infarction; Myocardium; Neovascularization, Pathologic; Protective Agents; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Vascular Endothelial Growth Factor A; Ventricular Remodeling

2008