salvianolic-acid-B has been researched along with Atherosclerosis* in 8 studies
8 other study(ies) available for salvianolic-acid-B and Atherosclerosis
Article | Year |
---|---|
Salvianolic acid B inhibits atherosclerosis and TNF-α-induced inflammation by regulating NF-κB/NLRP3 signaling pathway.
Inflammation is critical in the pathophysiology of atherosclerosis (AS). The aim of this study was to investigate the protective effect of salvianolic acid B (Sal B) on AS and to explore the molecular mechanism of tumor necrosis factor-α (TNF-α)-induced damage in human umbilical vein endothelial cells (HUVECs).. In vivo studies, LDLR. The change in the weight of the mice over time was an indication that Sal B had an effect on weight gain. Topics: Animals; Atherosclerosis; Cholesterol, LDL; Endothelial Cells; Humans; Inflammasomes; Inflammation; Mice; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Plaque, Atherosclerotic; Reactive Oxygen Species; Signal Transduction; Tumor Necrosis Factor-alpha | 2023 |
Inhibition of chemically and mechanically activated Piezo1 channels as a mechanism for ameliorating atherosclerosis with salvianolic acid B.
Salvianolic acid B (SalB) is effective for treating cardiovascular diseases. However, the molecular mechanisms underlying its therapeutic effects remain unclear. Mechanosensitive Piezo1 channels play important roles in vascular biology, although their pharmacological properties are poorly defined. Here, we aimed to identify novel Piezo1 inhibitors and gain insights into their mechanisms of action.. Intracellular Ca. Salvianolic acid B inhibited Yoda1-induced Ca. Our study provides novel mechanistic insights into the inhibitory role of salvianolic acid B against Piezo1 channels and improves our understanding of salvianolic acid B in preventing atherosclerotic lesions. Topics: Animals; Atherosclerosis; Benzofurans; Endothelial Cells; Ion Channels; Mice; RAW 264.7 Cells | 2022 |
Identification of core genes associated with the anti-atherosclerotic effects of Salvianolic acid B and immune cell infiltration characteristics using bioinformatics analysis.
Atherosclerosis (AS) is the greatest contributor to pathogenesis of atherosclerotic cardiovascular disease (ASCVD), which is associated with increased mortality and reduced quality of life. Early intervention to mitigate AS is key to prevention of ASCVD. Salvianolic acid B (Sal B) is mainly extracted from root and rhizome of Salvia Miltiorrhiza Bunge, and exerts anti-atherosclerotic effect. The purpose of this study was to screen for anti-AS targets of Sal B and to characterize immune cell infiltration in AS.. We identified targets of Sal B using SEA ( http://sea.bkslab.org/ ) and SIB ( https://www.sib.swiss/ ) databases. GSE28829 and GSE43292 datasets were obtained from Gene Expression Omnibus database. We identified differentially expressed genes (DEGs) and performed enrichment analysis. Weighted gene co-expression network analysis (WGCNA) was used to determine the most relevant module associated with atherosclerotic plaque stability. Intersecting candidate genes were evaluated by generating receiver operating characteristic (ROC) curves and molecular docking. Then, immune cell types were identified using CIBERSOFT and single-sample gene set enrichment analysis (ssGSEA), the relationship between candidate genes and immune cell infiltration was evaluated. Finally, a network-based approach to explore the candidate genes relationship with microRNAs (miRNAs) and Transcription factors (TFs).. MMP9 and MMP12 were been selected as candidate genes from 64 Sal B-related genes, 81 DEGs and turquoise module with 220 genes. ROC curve results showed that MMP9 (AUC = 0.815, P<0.001) and MMP12 (AUC = 0.763, P<0.001) were positively associated with advanced atherosclerotic plaques. The results of immune infiltration showed that B cells naive, B cells memory, Plasma cells, T cells CD8, T cells CD4 memory resting, T cells CD4 memory activated, T cells regulatory (Tregs), T cells gamma delta, NK cells activated, Monocytes, and Macrophages M0 may be involved in development of AS, and the candidate genes MMP9 and MMP12 were associated with these immune cells to different degrees. What' s more, miR-34a-5p and FOXC1, JUN maybe the most important miRNA and TFs.. The anti-AS effects of Sal B may be related to MMP9 and MMP12 and associated with immune cell infiltration, which is expected to be used in the early intervention of AS. Topics: Atherosclerosis; Benzofurans; Computational Biology; Gene Expression Profiling; Gene Regulatory Networks; Humans; Matrix Metalloproteinase 12; Matrix Metalloproteinase 9; MicroRNAs; Molecular Docking Simulation; Plaque, Atherosclerotic; Protein Interaction Maps; Quality of Life | 2022 |
Effect of astragaloside IV and salvianolic acid B on antioxidant stress and vascular endothelial protection in the treatment of atherosclerosis based on metabonomics.
Vascular endothelial cells and oxidation reduction system play an important role in the pathogenesis of atherosclerosis (AS). If these conditions are disordered, it will inevitably lead to plaque formation and even rupture. Astragaloside IV (AsIV) and salvianolic acid B (Sal B) are the main active ingredients of Astragalus membranaceus and Salvia miltiorrhiza, respectively, and found to ameliorate vascular endothelial dysfunction and protect against oxidative stress in recent studies. However, it is still unknown if the combination of AsIV and Sal B (AsIV + Sal B) can inhibit the development of plaque through amplifying the protective effect of vascular endothelial cells and anti-oxidative stress effect. To clarify the role of AsIV + Sal B in AS, we observed the efficacy of each group (Control, Model, AsIV, Sal B, and AsIV + Sal B) by biomolecular assays, such as observing the pathological morphology of the aorta by oil red O staining, evaluating the level of oxidative stress and endothelial cells in the serum by the Elisa test, and analyzing the changes of all small molecule metabolites in liver tissue by UPLC-QTOF-MS. Results showed that AsIV, Sal B and AsIV + Sal B decreased the deposition of lipid in the arterial wall, so as to exert the effect of anti-oxidant stress and vascular endothelial protection, where the inhibitory effect of AsIV + Sal B was the most obvious. Metabonomics analysis showed that Sal B regulated the metabolic pathways of arginine and proline. AsIV regulated glycerol metabolism and saturated fatty acid biosynthesis metabolism. AsIV + Sal B is mainly related to the regulation of the citrate cycle (TCA cycle), alanine, aspartic acid, and glutamate metabolism, cysteine, and methionine metabolism. Succinic acid and methionine are synergistic metabolites that exert an enhancing effect when AsIV and Sal B were used in combination. In conclusion, we demonstrated that AsIV acompanied with Sal B can be successfully used for anti-oxidative stress and vascular endothelial protection of AS, and succinic acid and methionine are the synergistic metabolites. Topics: Antioxidants; Atherosclerosis; Benzofurans; Endothelial Cells; Humans; Methionine; Saponins; Succinic Acid; Triterpenes | 2022 |
Salvianolic acid B improves autophagic dysfunction and decreases the apoptosis of cholesterol crystal‑induced macrophages via inhibiting the Akt/mTOR signaling pathway.
Progressive macrophage dysfunction and apoptosis are some of the major events that occur during atherogenesis. To further investigate the intrinsic association between atherosclerosis (AS) and macrophage apoptosis and autophagy, cholesterol crystals (CHCs) were used to stimulate RAW264.7 macrophages to establish a macrophage model of advanced AS. Cells in the CHC group were treated with salvianolic acid B (Sal B) to evaluate its protective effects and reveal its underlying molecular mechanism. The results demonstrated that treatments with Sal B significantly improved autophagy dysfunction and reduced the apoptotic rate of CHC‑induced macrophages. Furthermore, Sal B significantly attenuated CHC‑induced release of proinflammatory factors (TNF‑α and IL‑6) by macrophages. Treatment of macrophages with a specific inhibitor of autophagy (3‑methyladenine) significantly reversed Sal B‑mediated effects on autophagy, suggesting that Sal B‑induced autophagy may display a protective effect in CHC‑induced macrophages. Furthermore, pretreatment of CHC‑induced macrophages with insulin significantly decreased Sal B‑induced autophagy, indicating that the Akt/mTOR signaling pathway may serve as a critical mediator in regulating Sal B‑mediated cell death. Taken together, the present study demonstrated that Sal B improved autophagic dysfunction and reduced the apoptosis of CHC‑induced macrophages via inhibiting the Akt/mTOR signaling pathway. Topics: Animals; Apoptosis; Atherosclerosis; Autophagy; Benzofurans; Drugs, Chinese Herbal; Macrophages; Mice; Protective Agents; Proto-Oncogene Proteins c-akt; RAW 264.7 Cells; Salvia miltiorrhiza; TOR Serine-Threonine Kinases | 2021 |
Salvianolic acid B ameliorates atherosclerosis via inhibiting YAP/TAZ/JNK signaling pathway in endothelial cells and pericytes.
Topics: Acyltransferases; Adaptor Proteins, Signal Transducing; Animals; Apolipoproteins E; Atherosclerosis; Benzofurans; Cell Survival; Endothelial Cells; Gene Expression Regulation; Humans; MAP Kinase Kinase 4; MAP Kinase Signaling System; Mice; Pericytes; Transcription Factors; YAP-Signaling Proteins | 2020 |
Anti-inflammatory effects of danshen on human vascular endothelial cells in culture.
Inflammation plays a crucial role in the pathophysiology of atherosclerosis. Besides cytokines, chemokines and cell adhesion molecules, CD40 and P-selectin play important roles as key regulators of the inflammatory process in atherosclerosis. Danshen (DS) is commonly used in traditional Chinese medicine for therapy of cardiovascular diseases such as coronary artery disease. The aim of the present study was to evaluate the protective effects of DS with respect to possible anti-inflammatory effects. Human umbilical vein endothelial cells as well as platelets were incubated with an extract of DS or one of its major ingredients salvianolic acid B (Sal B), tanshinone IIA (Tansh) and protocatechuic acid (Protoc) under tumor necrosis factor (TNF)-α or ADP stimulation. Expression of CD40 and cellular adhesion molecules (VCAM-1/ICAM-1) were assessed via flow cytometry. Levels of interleukin (IL)-6, IL-8, monocyte-chemoattractant-protein (MCP)-1 as well as soluble VCAM1 and ICAM-1 in the supernatants were examined via luminex based analysis. Treatment with DS attenuated TNF-α induced expression of CD40. Furthermore, the expression of VCAM-1 and ICAM-1 as well as the release of soluble VCAM-1 and ICAM-1 were downregulated. In the cell supernatants we also observed a significant reduction of IL-6, IL8 and MCP-1. DS and its major ingredients, Sal B and Protoc, significantly inhibited TNF-induced expression and release of adhesion molecules, cytokines and chemokines as well as ADP-induced expression of platelet P-selectin. Because of the key roles of inflammatory mediators in the etiology of atherosclerosis, this work provides useful insight in understanding the pharmacological efficacy of Chinese herbal medicine. Topics: Abietanes; Adenosine Diphosphate; Anti-Inflammatory Agents; Atherosclerosis; Benzofurans; Blood Platelets; CD40 Antigens; Cells, Cultured; Chemokine CCL2; Down-Regulation; Drugs, Chinese Herbal; Human Umbilical Vein Endothelial Cells; Humans; Hydroxybenzoates; Inflammation Mediators; Intercellular Adhesion Molecule-1; Interleukin-6; Interleukin-8; P-Selectin; Salvia miltiorrhiza; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1 | 2013 |
Salvianolic acid B inhibits macrophage uptake of modified low density lipoprotein (mLDL) in a scavenger receptor CD36-dependent manner.
CD36, a class B scavenger receptor, has been implicated in the pathogenesis of a host of vascular inflammatory diseases. Through a high-throughput screening (HTS) assay for CD36 antagonist, we previously identified salvianolic acid B (SAB), a hydrophilic component derived from the herb Danshen, as a potential candidate. Danshen, the dried roots of Salvia miltiorrhiza, has been widely used in China for the prevention and treatment of atherosclerosis-related disorders. Previous studies showed that SAB acted as an anti-oxidant by preventing lipid peroxidation and oxidized LDL (oxLDL) formation. The present study was to investigate the specificity and efficacy of SAB in the inhibition of CD36-mediated lipid uptake. SAB reduced modified LDL (mLDL) uptake in a dose-dependent manner in phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 and RAW 264.7 cells. In the CD36 silenced THP-1 cells, SAB had no effect in reducing mLDL uptake, whereas its overexpression in CHO cells reinstates the effect, indicating a specific involvement of SAB in antagonizing the CD36's function. Surface plasmon resonance (SPR) analysis revealed a direct binding of SAB to CD36 with a high affinity (K(D) = 3.74 μM), confirming physical interactions of SAB with the receptor. Additionally, SAB reduced oxLDL-induced CD36 gene expression in the cultured cell lines and primary macrophages. In ApoE KO mice fed a high fat diet, SAB reduced CD36 gene expression and lipid uptake in macrophages, showing its ability to antagonize CD36 pathways in vivo. These results demonstrate that SAB is an effective CD36 antagonist and suggest SAB as a potential anti-atherosclerotic agent. Topics: Animals; Apolipoproteins E; Atherosclerosis; Benzofurans; Biological Transport; CD36 Antigens; Cell Line, Tumor; CHO Cells; Cricetinae; Cricetulus; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Hyperlipidemias; Hypolipidemic Agents; Lipoproteins, LDL; Macrophages; Mice; Mice, Inbred C57BL; Mice, Knockout; Receptors, LDL; RNA Interference; Surface Plasmon Resonance; Tetradecanoylphorbol Acetate; Time Factors; Transfection | 2012 |