salubrinal has been researched along with Brain-Injuries* in 4 studies
4 other study(ies) available for salubrinal and Brain-Injuries
Article | Year |
---|---|
Neuroprotective Effect of the Inhibitor Salubrinal after Cardiac Arrest in a Rodent Model.
Cardiac arrest (CA) yields poor neurological outcomes. Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, has been shown to have neuroprotective effects in both in vivo and in vitro brain injury models. This study investigated the neuroprotective mechanisms of Sal in postresuscitation brain damage in a rodent model of CA. In the present study, rats were subjected to 6 min of CA and then successfully resuscitated. Either Sal (1 mg/kg) or vehicle (DMSO) was injected blindly 30 min before the induction of CA. Neurological status was assessed 24 h after CA, and the cortex was collected for analysis. As a result, we observed that, compared with the vehicle-treated animals, the rats pretreated with Sal exhibited markedly improved neurological performance and cortical mitochondrial morphology 24 h after CA. Moreover, Sal pretreatment was associated with the following: (1) upregulation of superoxide dismutase activity and a reduction in maleic dialdehyde content; (2) preserved mitochondrial membrane potential; (3) amelioration of the abnormal distribution of cytochrome C; and (4) an increased Bcl-2/Bax ratio, decreased cleaved caspase 3 upregulation, and enhanced HIF-1 Topics: Aldehydes; Animals; Apoptosis; Brain Injuries; Cardiopulmonary Resuscitation; Caspase 3; Cerebellar Cortex; Cinnamates; Cytochromes c; Endoplasmic Reticulum Stress; Heart Arrest; Hypoxia-Inducible Factor 1, alpha Subunit; Male; Membrane Potential, Mitochondrial; Microscopy, Electron, Transmission; Mitochondria; Neuroprotective Agents; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Superoxide Dismutase-1; Thiourea | 2020 |
Neuroprotection and Blood-Brain Barrier Restoration by Salubrinal After a Cortical Stab Injury.
Following a central nervous system (CNS) injury, restoration of the blood-brain barrier (BBB) integrity is essential for recovering homeostasis. When this process is delayed or impeded, blood substances and cells enter the CNS parenchyma, initiating an additional inflammatory process that extends the initial injury and causes so-called secondary neuronal loss. Astrocytes and profibrotic mesenchymal cells react to the injury and migrate to the lesion site, creating a new glia limitans that restores the BBB. This process is beneficial for the resolution of the inflammation, neuronal survival, and the initiation of the healing process. Salubrinal is a small molecule with neuroprotective properties in different animal models of stroke and trauma to the CNS. Here, we show that salubrinal increased neuronal survival in the neighbourhood of a cerebral cortex stab injury. Moreover, salubrinal reduced cortical blood leakage into the parenchyma of injured animals compared with injured controls. Adjacent to the site of injury, salubrinal induced immunoreactivity for platelet-derived growth factor subunit B (PDGF-B), a specific mitogenic factor for mesenchymal cells. This effect might be responsible for the increased immunoreactivity for fibronectin and the decreased activation of microglia and macrophages in injured mice treated with salubrinal, compared with injured controls. The immunoreactivity for PDGF-B colocalized with neuronal nuclei (NeuN), suggesting that cortical neurons in the proximity of the injury were the main source of PDGF-B. Our results suggest that after an injury, neurons play an important role in both, the healing process and the restoration of the BBB integrity. J. Cell. Physiol. 232: 1501-1510, 2017. © 2016 Wiley Periodicals, Inc. Topics: Animals; Astrocytes; Blood-Brain Barrier; Brain Injuries; Calcium-Binding Proteins; Cell Survival; Cerebral Cortex; Cinnamates; Disease Models, Animal; Evans Blue; Fibronectins; Male; Mice, Inbred C57BL; Microfilament Proteins; Models, Biological; Neurons; Neuroprotection; Platelet-Derived Growth Factor; Signal Transduction; Thiourea; Transforming Growth Factor beta; Wounds, Stab | 2017 |
The neuroprotective effect of salubrinal in a mouse model of traumatic brain injury.
We have previously reported that mild traumatic brain injury (mTBI) induced cognitive deficits as well as apoptotic changes in the brains of mice. Apoptosis may be caused by severe, prolonged accumulation of misfolded proteins, and protein aggregation in the endoplasmic reticulum (ER stress). In an additional study, we have reported that mTBI activated the pro-apoptotic arm of the integrated stress response (ISR). The main goal of the present study was to test the involvement of the adaptive eIF2α/ATF4 pathway in mTBI-affected brains. Head injury was induced with a noninvasive, closed-head weight drop (30 g) to ICR mice. Salubrinal, the selective phosphatase inhibitor of p-eIF2α, was injected immediately and 24 h after mTBI (1 mg/kg, ip). Y-maze and novel object recognition tests to assess spatial and visual memories, respectively, were conducted either 7 or 30 days post-trauma. Salubrinal administration significantly improved memory deficits following mTBI. Slaubrinal also prevented the elevation of degenerating neurons and the reduction of mature neurons in the cortex (as seen by immunofluorescent staining with Fluoro-Jade-B and NeuN antibodies, 72 h and 1 week post-mTBI, respectively). Western blot analysis revealed that salubrinal prevented the significant reduction in eIF2α and ATF4 phosphorylation in mTBI brains 72 h post-injury. Immunofluorescence staining revealed that although the reduction in p-eIF2α did not reach significance, salubrinal administration elevated it dramatically. Our results show that targeting the translational/adaptive arm of the ISR with salubrinal may serve as a therapeutic strategy for brain damage. Topics: Activating Transcription Factor 4; Animals; Apoptosis; Brain Damage, Chronic; Brain Injuries; Cerebral Cortex; Cinnamates; Cognition Disorders; Drug Evaluation, Preclinical; Endoplasmic Reticulum Stress; Eukaryotic Initiation Factor-2; Exploratory Behavior; Hippocampus; Male; Maze Learning; Mice; Mice, Inbred ICR; Nerve Tissue Proteins; Neurons; Neuroprotective Agents; Phosphorylation; Protein Processing, Post-Translational; Recognition, Psychology; Signal Transduction; Thiourea; Wounds, Nonpenetrating | 2015 |
Endoplasmic reticulum stress plays critical role in brain damage after chronic intermittent hypoxia in growing rats.
Obstructive sleep apnea hypopnea syndrome (OSAHS) in children is associated with multiple system morbidities. Cognitive dysfunction as a result of central nervous system complication has been reported in children with OSAHS. However, the underlying mechanisms are poorly understood. Endoplasmic reticulum stress (ERS)-related apoptosis plays an important role in various diseases of the central nervous system, but very little is known about the role of ERS in mediating pathophysiological reactions to cognitive dysfunction in OSAHS. Chronic intermittent hypoxia (CIH) exposures, modeling OSAHS, across 2 and 4weeks in growing rats made more reference memory errors, working memory errors and total memory errors in the 8-Arm radial maze task, increased significantly TUNEL positive cells, upregulated the unfolded protein response in the hippocampus and prefrontal cortex as evidenced by increased phosphorylation of PKR-like endoplasmic reticulum kinase, inositol-requiring enzyme l and some downstream products. A selective inhibitor of eukaryotic initiation factor-2a dephosphorylation, salubrinal, prevented C/EBP-homologous protein activation in the hippocampus and prefrontal cortex throughout hypoxia/reoxygenation exposure. Our findings suggest that ERS mediated cell apoptosis may be one of the underlying mechanisms of cognitive dysfunction in OSAHS children. Further, a specific ERS inhibitor Salubrinal should be tested for neuroprotection against CIH-induced injury. Topics: Age Factors; Aging; Animals; Blood Pressure; Brain Injuries; Cinnamates; Disease Models, Animal; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Hippocampus; Hypoxia; Learning Disabilities; Male; Maze Learning; Oligopeptides; Prefrontal Cortex; Rats; Rats, Sprague-Dawley; Thiourea; Time Factors; Transcription Factors | 2014 |