salinomycin and Necrosis

salinomycin has been researched along with Necrosis* in 2 studies

Other Studies

2 other study(ies) available for salinomycin and Necrosis

ArticleYear
Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma.
    Oncotarget, 2016, May-24, Volume: 7, Issue:21

    Glioblastoma is the most frequent malignant brain tumor. Even with aggressive treatment, prognosis for patients is poor. One characteristic of glioblastoma cells is its intrinsic resistance to apoptosis. Therefore, drugs that induce alternative cell deaths could be interesting to evaluate as alternative therapeutic candidates for glioblastoma. Salinomycin (SLM) was identified through a chemical screening as a promising anticancer drug, but its mechanism of cell death remains unclear. In the present work we set out to elucidate how SLM causes cell death in glioblastoma cell lines (both established cell lines and brain tumor stem cell lines), aiming to find a potential antitumor candidate. In addition, we sought to determine the mechanism of action of SLM so that this mechanism can be can be exploited in the fight against cancer. Our data showed that SLM induces a potent endoplasmic reticulum (ER) stress followed by the trigger of the unfolded protein response (UPR) and an aberrant autophagic flux that culminated in necrosis due to mitochondria and lysosomal alterations. Of importance, the aberrant autophagic flux was orchestrated by the production of Reactive Oxygen Species (ROS). Alleviation of ROS production restored the autophagic flux. Altogether our data suggest that in our system the oxidative stress blocks the autophagic flux through lipid oxidation. Importantly, oxidative stress could be instructing the type of cell death in SLM-treated cells, suggesting that cell death modality is a dynamic concept which depends on the cellular stresses and the cellular mechanism activated.

    Topics: Autophagy; Brain Neoplasms; Cell Line, Tumor; Cell Self Renewal; Endoplasmic Reticulum Stress; Glioblastoma; Humans; Membrane Potential, Mitochondrial; Microscopy, Electron, Transmission; Mitochondria; Necrosis; Neoplastic Stem Cells; Pyrans; Reactive Oxygen Species; Unfolded Protein Response

2016
HDAC inhibitors enhance the lethality of low dose salinomycin in parental and stem-like GBM cells.
    Cancer biology & therapy, 2014, Mar-01, Volume: 15, Issue:3

    The present studies determined whether the antibiotic salinomycin interacted with HDAC inhibitors to kill primary human GBM cells. Regardless of PTEN, ERBB1, or p53 mutational status salinomycin interacted with HDAC inhibitors in a synergistic fashion to kill GBM cells. Inhibition of CD95/Caspase 8 or of CD95/RIP-1/AIF signaling suppressed killing by the drug combination. Salinomycin increased the levels of autophagosomes that correlated with increased p62 and LC3II levels; valproate co-treatment correlated with reduced LC3II and p62 expression, and increased caspase 3 cleavage. Molecular inhibition of autophagosome formation was protective against drug exposure. The drug combination enhanced eIF2α phosphorylation and decreased expression of MCL-1 and phosphorylation of mTOR and p70 S6K. Activation of p70 S6K or mTOR promoted cell survival in the face of combined drug exposure. Overexpression of BCL-XL or c-FLIP-s was protective. Collectively our data demonstrate that the lethality of low nanomolar concentrations of salinomycin are enhanced by HDAC inhibitors in GBM cells and that increased death receptor signaling together with reduced mitochondrial function are causal in the combinatorial drug necro-apoptotic killing effect.

    Topics: Antineoplastic Agents; Apoptosis; Autophagy; Breast Neoplasms; Cell Line, Tumor; Drug Synergism; Female; Glioblastoma; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Necrosis; Neoplastic Stem Cells; Pyrans; Valproic Acid; Vorinostat

2014