salicylates and Huntington-Disease

salicylates has been researched along with Huntington-Disease* in 2 studies

Other Studies

2 other study(ies) available for salicylates and Huntington-Disease

ArticleYear
The c-Raf inhibitor GW5074 provides neuroprotection in vitro and in an animal model of neurodegeneration through a MEK-ERK and Akt-independent mechanism.
    Journal of neurochemistry, 2004, Volume: 90, Issue:3

    Cerebellar granule neurons undergo apoptosis when switched from a medium containing high potassium (HK) to one that has low potassium (LK). LK-induced cell death is blocked by GW5074 [5-Iodo-3-[(3,5-dibromo-4-hydroxyphenyl) methylene]-2-indolinone], a synthetic drug that inhibits c-Raf activity in vitro. GW5074 has no direct effect on the activities of several apoptosis-associated kinases when assayed in vitro. In contrast to its effect in vitro, treatment of neurons with GW5074 causes c-Raf activation (when measured in vitro in the absence of the drug) and stimulates the Raf-MEK-ERK pathway. Treatment of neurons with GW5074 also leads to an increase in the activity of B-Raf, which is not inhibited by GW5074 in vitro at concentrations at which the drug exerts its neuroprotective effect. PD98059 and U0126, two distinct inhibitors of MEK, block the activation of ERK by GW5074 but have no effect on its ability to prevent cell death. Overexpression of a dominant-negative form of Akt does not reduce the efficacy of GW5074, demonstrating an Akt-independent mechanism of action. Neuroprotection is inhibited by SN-50, a specific inhibitor of nuclear factor-kappa B (NF-kappaB) and by the Ras inhibitor S-trans, trans-farnesylthiosalicylic acid (FTS) implicating NF-kappaB and Ras in the neuroprotective signaling pathway activated by GW5074. In addition to preventing LK-induced apoptosis, treatment with GW5074 protects against the neurotoxic effects of MPP+ and methylmercury in cerebellar granule neurons, and glutathione depletion-induced oxidative stress in cortical neurons. Furthermore, GW5074 prevents neurodegeneration and improves behavioral outcome in an animal model of Huntington's disease. Given its neuroprotective effect on distinct types of cultured neurons, in response to different neurotoxic stimuli, and in an animal model of neurodegeneration, GW5074 could have therapeutic value against neurodegenerative pathologies in humans.

    Topics: Animals; Cell Death; Cells, Cultured; Disease Models, Animal; Enzyme Inhibitors; Farnesol; Huntington Disease; Indoles; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Neurodegenerative Diseases; Neurons; Neuroprotective Agents; Neurotoxins; Nitro Compounds; Phenols; Propionates; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-raf; Rats; Rats, Sprague-Dawley; Salicylates; Signal Transduction

2004
Further characterization of in vitro conditions appropriate for GABA determination in human CSF: impact of acid deproteinization and freeze/thaw.
    Journal of neurochemistry, 1983, Volume: 41, Issue:4

    Recently established standardized protocols for collection, handling, and storage of CSF for measurement of gamma-aminobutyric acid (GABA) have proven valuable in the characterization of various CNS disorders. In response to two recent reports which may have an impact on certain widely used protocols, we have, using the confirmed ion-exchange/fluorometric procedure, systematically evaluated the effects of deproteinization with various concentrations of sulfosalicylic acid (SSA) ranging from 0 to 10% (100 mg/ml), as well as the effects of freeze/thaw (F/T) on CSF GABA levels. Results of F/T studies documented that levels are stable to freezing and thawing. Acid deproteinization studies revealed the presence of an equilibrium between strictly free GABA, demonstrable only in acid-free CSF, and a very loosely bound form of GABA, fully demonstrable only in CSF deproteinized with concentrations of SSA above 1% (10 mg/ml). The relationship between GABA concentrations in undeproteinized and acid-deproteinized CSF revealed a highly significant (p less than .001) correlation, suggesting that alterations of central GABAergic activity would be reflected by either the level of strictly free GABA or free plus loosely bound GABA. This hypothesis was upheld in studies of patients with Parkinson's disease (PD) and Huntington's disease (HD), two neurologic disorders in which dysfunctions of the GABA system have been implicated. Results indicated that CSF GABA levels are significantly reduced in both PD and HD patients compared with neurologically normal controls, whether the measurement is of free GABA or free plus loosely bound GABA. Thus, we conclude that the level of strictly free GABA is stable to freezing and thawing and can only be accurately determined in nonacidified CSF; however, existing protocols employing deproteinization in 5% SSA yield data that provide an equally good reflection of central GABAergic transmission.

    Topics: Adult; Aged; Benzenesulfonates; Drug Stability; Female; Freezing; gamma-Aminobutyric Acid; Humans; Huntington Disease; Male; Middle Aged; Parkinson Disease; Salicylates; Specimen Handling

1983