sacubitril has been researched along with Cardiotoxicity* in 6 studies
6 other study(ies) available for sacubitril and Cardiotoxicity
Article | Year |
---|---|
Empagliflozin and sacubitril/valsartan reverse methotrexate cardiotoxicity by repressing oxidative stress and hypoxia in heart embryonic H9c2 cardiomyocytes - the role of morphology of mitochondria observed on electron microscopy.
Oxidative stress and hypoxia play an important role in the pathogenesis of various cardiovascular diseases. We aimed to evaluate the effectiveness of sacubitril/valsartan (S/V) and Empagliflozin (EMPA) on hypoxia-inducible factor-1α (HIF-1α) and oxidative stress in H9c2 rat embryonic cardiomyocyte cells.. BH9c2 cardiomyocyte cells were treated with methotrexate (MTX) (10-0.156 μM), empagliflozin (EMPA; 10-0.153 µM) and sacubitril/valsartan (S/V; 100-1.062 µM) for 24, 48 and 72 h. The half maximum inhibitory concentration (IC50) and half maximum excitation concentration (EC50) values of MTX, EMPA and S/V were determined. The cells under investigation were exposed to 2.2 μM MTX before treatment with 2 μM EMPA and 25 μM S/V. The cell viability, lipid peroxidation, oxidation of proteins and antioxidant parameters were measured while morphological changes were also observed by transmission electron microscopy (TEM).. The results showed that treatment with 2 µM EMPA, 25 µM S/V or their combination produced a protective effect against the reduction in cell viability caused by 2.2 µM MTX. While HIF-1α levels plunged to their lowest with S/V treatment, oxidant parameters dipped, and antioxidant parameters soared to their highest level with S/V and EMPA combination treatment. A negative correlation was found between HIF-1α and total antioxidant capacity in the S/V treatment group.. A significant decrease in HIF-1α and oxidant molecules together with an enhancement in antioxidant molecules and normalization of the mitochondria morphology as observed on electron microscopy in S/V and EMPA-treated cells were detected. Although S/V and EMPA have both protective effects against cardiac ischemia and oxidative damage, this effect may be increased more with S/V treatment alone compared to combined treatment. Topics: Animals; Antioxidants; Cardiotoxicity; Hypoxia; Hypoxia-Inducible Factor 1, alpha Subunit; Methotrexate; Microscopy, Electron; Mitochondria; Myocytes, Cardiac; Oxidants; Oxidative Stress; Rats; Valsartan | 2023 |
Sacubitril/valsartan cardioprotective effect against cisplatin-induced cardiotoxicity via modulation of VEGF/eNOS and TLR4/TNFα/IL6 signalling pathways.
Drug-induced cardiac injury is a potentially preventable cause of heart failure. Cisplatin (CIS) is a widely used chemotherapeutic agent complicated with cardiotoxicity that limits its clinical application so we aimed to evaluate the suspected cardioprotective effect of sacubitril/valsartan (Sac/Val) against CIS cardiotoxic injury.. Forty male rats of Wistar albino species were divided into four groups. group I received the vehicle; group II was given the vehicle plus CIS (10 mg/kg) single i.p. on fifth day; group III was given Sac/Val (30 mg/kg/d) orally for 7 days plus CIS (10 mg/kg) single i.p. on fif5th day; group IV was given the same as group III plus nitro-ω-L-arginine (L-NNA) (25 mg/kg/d) orally for 7 days.. CIS-induced cardiotoxicity and L-NNA co-administered group showed significant increases in cardiac enzymes, toxic histopathological features, elevated heart weights, angiotensin II (Ang II), neprilysin, malondialdehyde (MDA), inflammatory mediators, blood pressure (BP) and caspase 3 expressions, but there are significant decreases in the antioxidant parameters, vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS). However, the co-administration of Sac/Val could ameliorate these changes of CIS.. Sac/Val has an important cardioprotective effect against CIS cardiotoxicity with the involvement of eNOS. Topics: Animals; Cardiotoxicity; Cisplatin; Interleukin-6; Male; Nitric Oxide Synthase; Rats; Rats, Wistar; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha; Valsartan; Vascular Endothelial Growth Factor A | 2023 |
Sacubitril/valsartan reduces endoplasmic reticulum stress in a rat model of doxorubicin-induced cardiotoxicity.
The induction of endoplasmic reticulum (ER) stress has been reported as a key contributor to the cardiotoxicity of doxorubicin. Previous in vitro and in vivo studies suggest that sacubitril/valsartan, a novel angiotensin receptor-neprilysin inhibitor, could be effective against doxorubicin-induced cardiotoxicity. However, the precise mechanisms are not fully understood. Therefore, we investigated whether the cardioprotective effects of sacubitril/valsartan are associated with ER stress modulation in a rat model of doxorubicin-induced cardiotoxicity. Male Sprague-Dawley rats were treated with intraperitoneal injections of doxorubicin (15 mg/kg; cumulative) or saline for 3 weeks. From the day before the first treatment, control animals were gavaged daily with water (n = 8), whereas doxorubicin-treated animals were gavaged daily with water (n = 8) or sacubitril/valsartan (60 mg/kg/day; n = 8) for 6 weeks. Echocardiography was performed 6 weeks after the initiation of doxorubicin. In addition, serum troponin I and N-terminal brain natriuretic peptide levels were determined, and the extent of apoptosis and protein levels related to ER stress in the cardiac tissue and doxorubicin-treated H9c2 cardiomyocytes were analyzed. Sacubitril/valsartan significantly reduced doxorubicin-induced cardiac dysfunction and apoptosis in the myocardium. In addition, sacubitril/valsartan significantly downregulated the expression levels of proteins related to apoptosis and ER stress, including BAX, caspase 3, GRP78, PERK, IRE-1α, ATF-6, eIF-2α, ATF-4, and CHOP, in the myocardium of a rat model of doxorubicin-induced cardiotoxicity in vivo and doxorubicin-treated H9c2 cardiomyocytes in vitro. Sacubitril/valsartan significantly alleviated doxorubicin-induced cardiotoxicity, which may be associated with the reduction of ER stress. Topics: Aminobutyrates; Animals; Biphenyl Compounds; Cardiotoxicity; Doxorubicin; Drug Combinations; Endoplasmic Reticulum Stress; Heart Failure; Male; Rats; Rats, Sprague-Dawley; Valsartan; Water | 2022 |
Sacubitril-valsartan: Hope or hype in the battle against cardiotoxicity due to cancer treatment?
Topics: Aminobutyrates; Angiotensin Receptor Antagonists; Biphenyl Compounds; Cardiotoxicity; Drug Combinations; Heart Failure; Humans; Neoplasms; Stroke Volume; Tetrazoles; Valsartan | 2022 |
Sacubitril-valsartan: Hope or hype in the battle against cardiotoxicity due to cancer treatment? Authors' reply.
Topics: Aminobutyrates; Angiotensin Receptor Antagonists; Biphenyl Compounds; Cardiotoxicity; Drug Combinations; Heart Failure; Humans; Neoplasms; Stroke Volume; Tetrazoles; Valsartan | 2022 |
Angiotensin receptor-neprilysin inhibition by sacubitril/valsartan attenuates doxorubicin-induced cardiotoxicity in a pretreatment mice model by interfering with oxidative stress, inflammation, and Caspase 3 apoptotic pathway.
Doxorubicin (DOX) is a well-known cardiotoxic agent, whereas sacubitril/valsartan (Sac/Val) is an effective treatment option in heart failure. In this study, we aimed to evaluate the effect of Sac/Val on DOX-induced cardiotoxicity in pretreatment mice model.. A total of 24 mice were equally classified into 4 groups; control group, DOX (20 mg/kg; fifth day), Sac/Val (80 mg/kg), and Sac/Val+DOX (Sac/Val was given from day one of the study before doxorubicin administration). Electrocardiography parameters, including durations of QRS, ST, QT, PP segment, and QT/PQ index were measured. Total antioxidant status (TAS), total oxidant status (TOS), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), IL-6, NT-proBNP concentrations, and Caspase 3 activity were evaluated.. At the end of the 9-day study duration, QRS, ST, QT intervals, QT/PQ index and TAS, TOS, TNF-α, IL-1β, IL-6 levels were significantly higher in the DOX group than in the control group (p<0.001). Moreover, there were significant differences only in the PP interval when comparing the Sac/Val+DOX and control groups (p<0.001). QRS, ST, QT intervals, and QT/PQ index, TAS, TOS, TNF-α, IL-1β, IL-6 levels were significantly lower in the Sac/Val+ DOX group compared with the DOX group (p<0.001). Furthermore, NT-proBNP levels were lower in the Sac/Val+DOX group compared with the DOX group along with less Caspase 3 apoptosis.. Sac/Val seems to be cardioprotective against DOX-induced cardiotoxicity in pretreatment mice model. These findings can be attributed to the antiarrhythmic, anti-inflammatory, antioxidant, and antiapoptotic effects of Sac/Val as shown in this study. Topics: Aminobutyrates; Angiotensins; Animals; Biphenyl Compounds; Cardiotoxicity; Caspase 3; Doxorubicin; Inflammation; Mice; Neprilysin; Oxidative Stress; Receptors, Angiotensin; Valsartan | 2021 |