s6c-sarafotoxin and Vasospasm--Intracranial

s6c-sarafotoxin has been researched along with Vasospasm--Intracranial* in 2 studies

Other Studies

2 other study(ies) available for s6c-sarafotoxin and Vasospasm--Intracranial

ArticleYear
Alteration of the cerebrovascular function of endothelin B receptor after subarachnoidal hemorrhage in the rat.
    Experimental biology and medicine (Maywood, N.J.), 2006, Volume: 231, Issue:6

    The substantial role of endothelin-1 (ET-1) in the development of cerebral vasospasm (CVS) after subarachnoidal hemorrhage (SAH) has been demonstrated by numerous experimental and, recently, clinical investigations. Whether the expression or function of the ET(B) receptor is altered in CVS is still unclear, however. The aim of the present study was, therefore, to characterize the cerebroarterial ET(B) receptor function during CVS. Experimental CVS was induced by the rat double-hemorrhage model. Reduction of the cerebral blood flow (CBF) was confirmed by magnetic resonance perfusion-weighted imaging. Animals were sacrificed on days 3 (d3) and 5 (d5) after CVS induction. The basilar arteries (BA) were dissected, cut into ring segments, and prepared for measurement of isometric force in an organ bath. Concentration-effect curves (CECs) were constructed by cumulative application of ET-1, acetylcholine (Ach), or sarafotoxin S6c (S6c). Segments with (E+) endothelial function were used. CECs were compared by the maximum effect (E(max)), the pD2, and the shift calculated on the pD2 level. The pD2 is the negative decadic logarithm of the concentration producing the half maximal effect (-log10EC50). After SAH, the relative regional CBF in the d3 and d5 groups was reduced to 63% and 32%, respectively, of the CBF in controls. ET-1 induced a dose-dependent contraction of segments with and segments without CVS. In E+ segments, the E(max) for ET-1 was not significantly changed after SAH (mean values [ +/- SEM] of 104% +/- 4% for the control group, 106% +/- 4% for the d3 group, and 104% +/- 3% for the d5 group). The CECs, however, were significantly shifted to the left versus the control by factors of 2.4 in the d3 group and 3.6 in the d5 group. Relaxation by S6c was significantly reduced after SAH (E(max:) 73% +/- 11% in the control group, 21% +/- 13% in the d3 group, and 13% +/- 8% in the d5 group), whereas relaxation associated with Ach was not significantly changed (E(max): 45% +/- 7% in the control group, 56% +/- 6% in the d3 group, and 43% +/- 6% in the d5 group). Significant contraction by S6c was not observed in E+ and E - segments in any of the study groups. The present data indicate the loss of the ET(B) receptor-mediated relaxation of the cerebral arteries in cases of CVS, which is independent of the endothelial nitric oxide synthase level.

    Topics: Acetylcholine; Animals; Basilar Artery; Cholinergic Agents; Dose-Response Relationship, Drug; Endothelin-1; Endothelium, Vascular; In Vitro Techniques; Isometric Contraction; Male; Rats; Rats, Sprague-Dawley; Receptor, Endothelin B; RNA, Messenger; Serotonin; Subarachnoid Hemorrhage; Vasoconstrictor Agents; Vasospasm, Intracranial; Viper Venoms

2006
Cerebrovascular characterization of clazosentan, the first nonpeptide endothelin receptor antagonist shown to be clinically effective for the treatment of cerebral vasospasm. Part II: effect on endothelin(B) receptor-mediated relaxation.
    Journal of neurosurgery, 2005, Volume: 102, Issue:6

    The disturbed balance between nitric oxide and endothelin (ET)-1 in the cerebrovasculature seems to play a major role in the development of cerebral vasospasm after subarachnoid hemorrhage. Endothelin-1 represents the contractile part in this balance. In addition to the prevailing ET(A) receptor-dependent contractile effect, ET-1 also has ET(B) receptor-mediated vasodilatory attributes. The aim of the present study was to define the actual selectivity of clazosentan, the first putative highly ET(A) receptor-selective antagonist clinically proven to be effective in the treatment of vasospasm in the cerebrovasculature.. Rat basilar artery ring segments with endothelial function were used for the measurement of isometric force. Concentration effect curves were constructed by cumulative application of sarafotoxin S6c, ET-1, or big ET-1 in the presence or absence of clazosentan (10(-9) to 10(-6) M) after a precontraction was induced by prostaglandin F2alpha. The inhibition by clazosentan was estimated by the value of the affinity constant (pA2). The relaxation induced by sarafotoxin S6c, ET-1, and big ET-1 was inhibited in a competitive manner by clazosentan, yielding pA2 values of 7.1, 6.7, and 6.5, respectively. The selectivity to the ET(A) receptor in the cerebrovascular system was approximately two logarithmic units.. The present investigation shows a competitive inhibition of ET(B) receptor-mediated relaxation in cerebral vessels by clazosentan in therapeutically relevant concentrations. Thus, additional clinical trials should be undertaken to evaluate clazosentan concentrations in cerebrospinal fluid. Furthermore, the present data may be taken to describe the pharmacological properties for an ET receptor antagonist specifically tailored for the treatment of pathological conditions of impaired cerebral blood flow.

    Topics: Animals; Basilar Artery; Drug Interactions; Endothelin B Receptor Antagonists; Endothelin-1; In Vitro Techniques; Male; Peptides; Rats; Rats, Sprague-Dawley; Receptor, Endothelin B; Vasoconstrictor Agents; Vasodilation; Vasospasm, Intracranial; Viper Venoms

2005