s-trans-trans-farnesylthiosalicylic-acid has been researched along with Adenocarcinoma* in 2 studies
2 trial(s) available for s-trans-trans-farnesylthiosalicylic-acid and Adenocarcinoma
Article | Year |
---|---|
Integrated preclinical and clinical development of S-trans, trans-Farnesylthiosalicylic Acid (FTS, Salirasib) in pancreatic cancer.
S-trans,trans-Farnesylthiosalicylic Acid (FTS, salirasib) inhibits Ras-dependent cell growth by dislodging all isoforms of Ras, including mutant Ras, from the plasma membrane. This study evaluated the activity, safety, and toxicity of salirasib in preclinical models and patients with metastatic pancreatic adenocarcinoma (PDA).. In the preclinical study, salirasib was tested, alone and in combination with gemcitabine, in patient derived xenografts (PDX) of PDA. In the clinical study, treatment-naïve patients with advanced, metastatic PDA were treated with a standard dose schedule of gemcitabine and salirasib 200-800 mg orally (PO) twice daily (bid) for 21 days every 28 days. Tissue from preclinical models and patients' biopsies were collected pre-treatment and on Cycle (C) 1, Day (D) 9 to characterize the effect of gemcitabine and salirasib on activated Ras protein levels. Plasma samples for pharmacokinetics were collected for salirasib administered alone and in combination.. Salirasib inhibited the growth of 2/14 PDX models of PDA and modulated Ras signaling in these tumors. Nineteen patients were enrolled. No DLTs occurred. Common adverse events included hematologic and gastrointestinal toxicities and fatigue. The median overall survival was 6.2 months and the 1 year survival 37 %. In 2 patients in whom paired tissue biopsies were available, Ras and KRas protein levels were decreased on C1D9. Salirasib exposure was not altered by gemcitabine and did not correlate with PD outcomes.. The combination of gemcitabine and salirasib appears well-tolerated, with no alteration of salirasib exposure, and exerted clinical and PD activity in PDA. Topics: Adenocarcinoma; Adult; Aged; Aged, 80 and over; Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Deoxycytidine; Farnesol; Female; Gemcitabine; Humans; Male; Mice; Mice, Nude; Middle Aged; Mitogen-Activated Protein Kinases; Pancreatic Neoplasms; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins p21(ras); ras Proteins; Salicylates; Tumor Burden; Xenograft Model Antitumor Assays | 2012 |
A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations.
KRAS mutations are present in 30% of lung adenocarcinomas. Salirasib prevents Ras membrane binding thereby blocking the function of all Ras isoforms. This phase II study determined the activity of salirasib in patients with advanced lung adenocarcinomas with KRAS mutations.. Two cohorts of patients with stage IIIB/IV lung adenocarcinoma were eligible: patients with tumors with KRAS mutations who were previously treated with chemotherapy and patients receiving initial therapy who had ≥15 pack-year smoking history. Salirasib was given orally from days 1 to 28 of a 35-day cycle. The primary end point was the rate of nonprogression at 10 weeks.. Thirty-three patients were enrolled. Thirty patients had KRAS mutations (23 patients who were previously treated and 7/10 patients who had no prior therapy). Of the previously treated patients, 7 of 23 (30%) had stable disease at 10 weeks, and 4 of 10 (40%) previously untreated patients had stable disease at 10 weeks. No patient had a radiographic partial response (0% observed rate, 95% confidence interval 0-12%). The median overall survival was not reached (>9 months) for previously untreated patients and it was 15 months for patients who received prior chemotherapy. Diarrhea, nausea, and fatigue were the most common toxicities.. Salirasib at the current dose and schedule has insufficient activity in the treatment of KRAS mutant lung adenocarcinoma to warrant further evaluation. The successful enrollment of 30 patients with tumors with KRAS mutant lung adenocarcinoma over 15 months at a single site demonstrates that drug trials directed at a KRAS-specific genotype in lung cancer are feasible. Topics: Adenocarcinoma; Aged; Antineoplastic Agents; Carcinoma, Non-Small-Cell Lung; DNA, Neoplasm; Farnesol; Female; Follow-Up Studies; Humans; Lung Neoplasms; Male; Middle Aged; Mutation; Neoplasm Staging; Polymerase Chain Reaction; Proto-Oncogene Proteins; Proto-Oncogene Proteins p21(ras); ras Proteins; Salicylates; Survival Rate; Treatment Outcome | 2011 |