s-sulphocysteine has been researched along with Disease Models, Animal in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (66.67) | 24.3611 |
2020's | 1 (33.33) | 2.80 |
Authors | Studies |
---|---|
Abrams, RPM; Bachani, M; Balasubramanian, A; Brimacombe, K; Dorjsuren, D; Eastman, RT; Hall, MD; Jadhav, A; Lee, MH; Li, W; Malik, N; Nath, A; Padmanabhan, R; Simeonov, A; Steiner, JP; Teramoto, T; Yasgar, A; Zakharov, AV | 1 |
Arjune, S; Ayton, S; Belaidi, AA; Bush, AI; Dejanovic, B; Fusca, D; Hetsch, F; Kloppenburg, P; Kumar, A; Meier, JC; Santamaria-Araujo, JA; Schwarz, G; Semtner, M; Winkelmann, A | 1 |
Brueck, W; Burfeind, P; Hakroush, S; Jakubiczka-Smorag, J; Kumar, A; Metz, I; Reiss, J; Santamaria-Araujo, JA; Schwarz, G; Smorag, L | 1 |
3 other study(ies) available for s-sulphocysteine and Disease Models, Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
S-sulfocysteine/NMDA receptor-dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency.
Topics: Animals; Calcium Signaling; Cysteine; Disease Models, Animal; GABAergic Neurons; HEK293 Cells; Humans; Memantine; Metal Metabolism, Inborn Errors; Mice; Neurodegenerative Diseases; Organophosphorus Compounds; Pterins; Receptors, N-Methyl-D-Aspartate; Synapses; Tungsten Compounds | 2017 |
Mouse model for molybdenum cofactor deficiency type B recapitulates the phenotype observed in molybdenum cofactor deficient patients.
Topics: Animals; Apoptosis; Carbon-Carbon Lyases; Coenzymes; Cysteine; Disease Models, Animal; Gene Expression; Humans; Hypoxanthine; Metal Metabolism, Inborn Errors; Metalloproteins; Mice; Mice, Knockout; Molybdenum Cofactors; Mutation; Nuclear Proteins; Phenotype; Pteridines; Xanthine | 2016 |