s-propargylcysteine has been researched along with Myocardial-Ischemia* in 4 studies
1 review(s) available for s-propargylcysteine and Myocardial-Ischemia
Article | Year |
---|---|
The Pharmacological Effects of S-Propargyl-Cysteine, a Novel Endogenous H2S-Producing Compound.
S-propargyl-cysteine (SPRC), also named as ZYZ-802, is a structural analog of S-allylcysteine (SAC), the most abundant constituent of aged garlic extract. SPRC becomes a derivative of the amino acid cysteine, which contains sulfur atom, by changing allyl group in SAC to propargyl group in SPRC. Another analog of SPRC and SAC is S-propyl cysteine (SPC), which has propyl group instead in its cysteine structure. Drug formulation of SPRC has been investigated in the mixture of extenders, such as lactose, microcrystalline cellulose, and cross-linked povidone, showing good fluidity and scale-up production possibility. Controlled release formulation of SPRC (CR-SPRC) and leonurine-SPRC were invented and shown the decent pharmacological effects in heart failure and hypoxia injury, respectively. The pharmacological effects of SPRC have been shown that cardioprotection and proangiogenesis in several ischemic heart models, neuroprotection in Alzheimer's disease, proapoptosis in gastric cancer and anti-inflammation in acute pancreatitis. Moreover, CR-SPRC reduced infarct size and recovered partial cardiac function in heart failure rat model. Leonurine-SPRC protected hypoxic neonatal rat ventricular myocytes in much lower dose. Interestingly, since the propagyl group in SPRC has the stronger chemical bond in the cysteine structure than allyl group in SAC and propyl group in SPC, SPRC showed more extensive cardioprotection in ischemic rat hearts model compared to SAC and SPC. The mechanisms of pharmacological effects of SPRC have been unveiled that SPRC reduced Ca2+ accumulation, activated antioxidants, inhibited STAT3, decreased inflammatory cytokines, and elevated p53 and Bax. More pharmacological effects and mechanisms of SPRC will be discovered in atherosclerosis, hypertension, and other diseases. Topics: Animals; Chemistry, Pharmaceutical; Cysteine; Heart Failure; Humans; Hydrogen Sulfide; Myocardial Ischemia; Neovascularization, Physiologic | 2015 |
3 other study(ies) available for s-propargylcysteine and Myocardial-Ischemia
Article | Year |
---|---|
S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3.
Conventional revascularization strategies or drug therapies for ischemic heart disease (IHD) are designed for reperfusion of coronary arteries to salvage cardiomyocytes, but occasionally, myocardial reperfusion injury can occur because of microcirculatory dysfunction. Therefore, a more microcirculation-friendly strategy should be explored to overcome and compensate for the shortcomings of conventional strategies. In this work, we investigated the proangiogenic effect of S-Propargyl-Cysteine (SPRC), a novel water-soluble modulator of endogenous hydrogen sulfide, and elucidated the possible mechanisms involved to provide an experimental basis for angiogenesis-mediated drug therapy for IHD.. SPRC promoted cell proliferation, adhesion, migration, and tube formation of primary human umbilical vein endothelial cells (HUVEC) and increased angiogenesis in the rat aortic ring and Matrigel plug models. In a mouse model of hindlimb ischemia and a rat model of myocardial ischemia, SPRC also promoted angiogenesis after ligation of the left femoral artery or coronary artery to ameliorate ischemic conditions. In primary HUVEC, STAT3 phosphorylation was significantly induced after SPRC treatment. The critical roles of STAT3 in mediating the proangiogenic effect of SPRC were confirmed by RNA interference. Co-crystallization excluded the possible direct interaction between SPRC and STAT3, whereas co-immunoprecipitation revealed an enhanced interaction between VEGFR2 and STAT3 after SPRC treatment. Meanwhile, immunofluorescence and chromatin immunoprecipitation showed that SPRC induced the nuclear translocation of STAT3, followed by transcriptional activation of downstream promoters, particularly the Vegf promoter.. We present a novel STAT3-mediated mechanism in SPRC-induced angiogenesis and demonstrate the therapeutic potential of SPRC in ischemic disease through angiogenesis promotion. Topics: Active Transport, Cell Nucleus; Angiogenesis Inducing Agents; Animals; Cell Adhesion; Cell Movement; Cell Proliferation; Cysteine; Disease Models, Animal; Human Umbilical Vein Endothelial Cells; Humans; Hydrogen Sulfide; Male; Mice; Myocardial Ischemia; Neovascularization, Pathologic; Neovascularization, Physiologic; Protein Binding; Protein Transport; Rats; STAT3 Transcription Factor; Transcriptional Activation; Vascular Endothelial Growth Factor Receptor-2 | 2014 |
Leonurine-cysteine analog conjugates as a new class of multifunctional anti-myocardial ischemia agent.
The design, synthesis and biological evaluation of novel Leonurine-cysteine analog conjugates 3,5-dimethoxy-4-(2-amino-3-prop-2-ynylsulfanyl-propionyl)-benzoic acid 4-guanidino-butyl ester (1a), 3,5-dimethoxy-4-(2-animo-3-allysulfanyl-propionyl)-benzoic acid 4-guanidino-butyl ester (1b) and 3,5-dimethoxy-4-(3-(2-chlorocarbonyl-ethyldisulfanyl)-propionyl)-benzoic acid 4-guanidino-butyl ester (2) were reported in this paper. We tested their effects on hypoxia-induced neonatal rat ventricular myocytes. Our data showed that all of them had cardioprotective effects. Both of 1a and 1b were able to modulate hydrogen sulfide production, and 1a possessed higher biological activity than 1b and 2, which indicated that there was positive correlation between conjugates and their precursors. Furthermore we illuminated that the cardioprotective mechanism of 1a were related to increase SOD and CAT activity, decrease MDA and ROS level, protect some cell organs and regulate apoptosis-associated genes and proteins expression (bcl-2 and bax) via the caspase-3 pathway in molecular level. These results indicated that 1a had the potential to be a new class of multifunctional anti-myocardial ischemia agent. Most importantly, these results provided us important clues for the further design and modification of this type of Leonurine-cysteine analog conjugates in future. Topics: Animals; Animals, Newborn; Blotting, Western; Catalase; Cells, Cultured; Cysteine; Gallic Acid; Heart Ventricles; Magnetic Resonance Spectroscopy; Malondialdehyde; Mass Spectrometry; Myocardial Ischemia; Polymerase Chain Reaction; Rats; Superoxide Dismutase | 2011 |
S-propargyl-cysteine protects both adult rat hearts and neonatal cardiomyocytes from ischemia/hypoxia injury: the contribution of the hydrogen sulfide-mediated pathway.
In this study, we determined the cardioprotective effects of S-propargyl-cysteine (SPRC), a structural analog of S-allylcysteine (SAC), using in vivo models of acute myocardial infarction (MI) and in vitro hypoxic cardiomyocytes models. MI was created in rats by ligating the left anterior descending coronary artery. Plasma enzymes levels and cystathionine-gamma-lyase (CSE) activities were determined. Primary cultures of newborn rats' cardiomyocytes were injured by hypoxia for 6 h. Cell viabilities were measured with the thiazolyl blue assay. RT-PCR and western blot analysis revealed the expression of CSE in both models. The protective effects of SPRC were associated with an observed reduction in infarct size (20.8 +/- 2.4% vs. 36.0 +/- 1.3%), decreased plasma enzymes levels and reduced malondialdehyde levels when compared to the MI vehicle group (P < 0.05); cardiac function was also improved. SPRC increased CSE activity and plasma H2S concentration by 1.6-fold and 1.3-fold, respectively, in MI rats. Decreased cell viability (64.5 +/- 5.4%) in hypoxic cardiomyocytes could be rescued with use of SPRC (81.0 +/- 3.1%). Similarly, mRNA and protein expression of CSE were upregulated in the SPRC group. Treatment with the CSE inhibitor propargylglycine abolished the protective effects of SPRC. Our study provides novel evidence that SPRC is protective in myocardial infarctions via a H2S-related pathway. Topics: Animals; Animals, Newborn; Cell Hypoxia; Cell Survival; Cystathionine gamma-Lyase; Cysteine; Disease Models, Animal; Hydrogen Sulfide; Male; Myocardial Infarction; Myocardial Ischemia; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Up-Regulation | 2009 |